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TaskTask

1)To recognize a landmark (if any) on an input image of 
uncertain size.

2)Usually, the problem is to have the annotated dataset.



  

DatasetDataset

1)It’s about 1.200.000 pictures covering about 15k 
landmarks.

2)Each image may contain ≥ 0 landmarks on it.

3)Actual .csv-file:

[image id], [image url], [landmark id]



  

Building a datasetBuilding a dataset

1)~20 GPS tagged images

2)Online tour websites

1) + 2) →unsupervised clustering model (m.)

Photo sharing websites →(m.) → asking authors of 
images.



Preparing images

Problems:

1) Images can have different size

2) Images can have different quality

3) Images can have some noize (humans, which hide part 
of landmark and something like this)

4) Transform images to matrix



Different size of images

Solution:

1) Plot distribution of image`s sizes.

2) Split dataset images to classes based on our plot (If 
amount of images with small size less then 5%, for 
example, we will  drop this class from our dataset)

3) Scale all images of one class to mean value size



Different quality

Solution:

Apply «Enhanced clarity filter» to each image

Filter Matrix: Example:



Delete some noize

Now we don`t know how to delete this noize. But we are 
working on it. First idea was apply another NN which 
recognize humans on images and after recognizing fill 
humans by green pixels, for example.



Transform image to matrix

We decided to transform prepared image to matrix of 
RGB colors. Each pixel will presented by three values:

1) Value of red

2) Value of green

3) Value of blue



Convolutional neural networks

A usual neural network with “Convolutional ” layers



Filters



When the picture passes through one convolution layer, 
the output of the first layer becomes the input value of 
the 2nd layer. Now it's a bit harder to visualize. When we 
talked about the first layer we used only the data of the 
original image. But when we moved to the 2nd layer, the 
input value for it was one or more property maps - the 
result of processing the previous layer. Each set of input 
data describes the positions where certain basic 
characteristics occur on the source image.



Subsampling and full-connected 
layer

Now that we can bind high-level properties we could 
attach a fully connected layer at the end of the network. 

This layer takes input data and outputs an N-spatial 
vector, where N is the number of classes from which the 

program selects the desired one. 



For example, if you want a program for recognizing 
numbers, N will have a value of 10, because the numbers 
are 10. Each number in this N-spatial vector represents 
the probability of the class. For example, if the result 

vector for the digit recognition program is [0 0.1 0.1 0.75 
0 0 0 0 0.05], then there is a 10% probability that in the 
image "1", 10% the probability that the image "2", 75% 

probability - "3", and 5% probability - "9" (of course, 
there are other ways of presenting the conclusion).



 Full architecture 


