

Google Landmark Recognition
Challenge

Google Landmark Recognition
Challenge

Klim Markelov
Seth Gyamerah
Daniil Fishman
Artem Sergeev

Vitaly Poteshkin

TaskTask

1)To recognize a landmark (if any) on an input image of
uncertain size.

2)Usually, the problem is to have the annotated dataset.

DatasetDataset

1)It’s about 1.200.000 pictures covering about 15k
landmarks.

2)Each image may contain ≥ 0 landmarks on it.

3)Actual .csv-file:

[image id], [image url], [landmark id]

Building a datasetBuilding a dataset

1)~20 GPS tagged images

2)Online tour websites

1) + 2) →unsupervised clustering model (m.)

Photo sharing websites →(m.) → asking authors of
images.

Preparing images

Problems:

1) Images can have different size

2) Images can have different quality

3) Images can have some noize (humans, which hide part
of landmark and something like this)

4) Transform images to matrix

Different size of images

Solution:

1) Plot distribution of image`s sizes.

2) Split dataset images to classes based on our plot (If
amount of images with small size less then 5%, for
example, we will drop this class from our dataset)

3) Scale all images of one class to mean value size

Different quality

Solution:

Apply «Enhanced clarity filter» to each image

Filter Matrix: Example:

Delete some noize

Now we don`t know how to delete this noize. But we are
working on it. First idea was apply another NN which
recognize humans on images and after recognizing fill
humans by green pixels, for example.

Transform image to matrix

We decided to transform prepared image to matrix of
RGB colors. Each pixel will presented by three values:

1) Value of red

2) Value of green

3) Value of blue

Convolutional neural networks

A usual neural network with “Convolutional ” layers

Filters

When the picture passes through one convolution layer,
the output of the first layer becomes the input value of
the 2nd layer. Now it's a bit harder to visualize. When we
talked about the first layer we used only the data of the
original image. But when we moved to the 2nd layer, the
input value for it was one or more property maps - the
result of processing the previous layer. Each set of input
data describes the positions where certain basic
characteristics occur on the source image.

Subsampling and full-connected
layer

Now that we can bind high-level properties we could
attach a fully connected layer at the end of the network.

This layer takes input data and outputs an N-spatial
vector, where N is the number of classes from which the

program selects the desired one.

For example, if you want a program for recognizing
numbers, N will have a value of 10, because the numbers
are 10. Each number in this N-spatial vector represents
the probability of the class. For example, if the result

vector for the digit recognition program is [0 0.1 0.1 0.75
0 0 0 0 0.05], then there is a 10% probability that in the
image "1", 10% the probability that the image "2", 75%

probability - "3", and 5% probability - "9" (of course,
there are other ways of presenting the conclusion).

 Full architecture

