TalkingData

Kaggle Project

Problem Description

Fraud risk is everywhere, but for companies that advertise online, click fraud can happen at an overwhelming volume, resulting in misleading click data and wasted money.

Problem Description

Talkingdata, China's largest independent big data service platform, covers over 70% of active mobile devices nationwide. They handle 3 billion clicks per day, of which 90% are potentially fraudulent.

Problem Description

We need to build an algorithm that predicts whether a user will download an app after clicking a mobile app ad.

Data Description

We have **training set** 7.5Gb:

total number of instances = 184 903 890, number of features = 7,

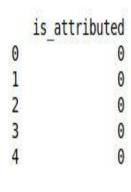
number of instances in each class is:

≈0,25% in class 1 and ≈99,75% in class 0

And test set 860Mb:

total number of instances = 18 790 469

Features Description


- **ip**: ip address of click.
- app: app id for marketing.
- device: device type id of user mobile phone (e.g., iphone 6 plus, iphone 7, huawei mate 7, etc.)
- **os**: os version id of user mobile phone

Features Description

- channel: channel id of mobile ad publisher
- click_time: timestamp of click (UTC)
- attributed_time: if user download the app for after clicking an ad, this is the time of the app download
- is_attributed: the target that is to be predicted, indicating the app was downloaded

	ip	арр	device	05	channel	click time	attributed time	1
0	87540	12	1	13	497	2017-11-07 09:30:38	NaN	
1	105560	25	1	17	259	2017-11-07 13:40:27	NaN	
2	101424	12	1	19	212	2017-11-07 18:05:24	NaN	
3	94584	13	1	13	477	2017-11-07 04:58:08	NaN	
4	68413	12	1	1	178	2017-11-09 09:00:09	NaN	

Features Description

	ip	арр	device	os	channel	click_time
number of different values in each feature	277396	706	3475	800	202	259620
range of each feature	min 1 max 364778	min 0 max 768	min 0 max 4227	min 0 max 956	min 0 max 500	min 2017-11-06 14:32:21 max 2017-11-09 16:00:00

Problems:

1. Almost all features are encoded, so we cannot extract any additional information

2. Classes in the training set are not balanced

Possible Solutions:

1. Logistic regression

2. Random forest

3. Neural network

4. Gradient boosting