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Online Learning

Key Point

* By replacing the true Posterior distribution
1. Update approximate posterior

2. Optimal projection into parametric family
(Choosing it to be Gaussian)

* Simultaneously



Bayesian Inference

In terms of Epistemic Uncertainty
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Bayesian Inference

MCMC(Markov Chain Monte Carlo)
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Bayesian Inference

MCMC(Markov Chain Monte Carlo)

1. Metropolis Algorithm



Bayesian Inference

MCMC(Markov Chain Monte Carlo)

2. Gibbs Algorithm



Bayesian C-DF
Advantages

1. Simultaneously
2. Serves numerous desirable feature
3. High Dimensional compressed regression
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Existed Methods

ADF(Assumed Density Filtering)
EP(Expectation Propagation)
PL(Particle Learning)

« SMC(Sequential Monte Carlo)
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SCSS(Surrogate Conditional Sufficient Statistics)
- Compare to CSS(Conditional Sufficient Statistics)



Bayesian C-DF

Results

Avg. coverage 3 | Length | Time (sec) | MSE = Z§:1(ét — Bo)?/p

=200 | t =400 | ¢t =500
C-DF 1.0 0.600_01 954_12 0.270,001 0.150_001 0.060_001
SMCMC 1.0 0.600_01 ]-]-9-44.64 0.120,001 0.080'001 0.040_001

Table 1: Inferential performance for C-DF and SMCMC for parameters of interest. Coverage
and length are based on 95% credible intervals and is averaged over all the 3,’s (j = 1,..,5)
and all time points and over 10 independent replications. We report the time taken to
produce 500 MCMC samples with the arrival of each data shard. MSE along with associated
standard errors are reported at different time points.
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Figure 1: Kernel density estimates for posterior draws using SMCMC and the C-DF algo-
rithm at ¢ = 200, 500. Shown from left to right are plots of model parameters 3y, 34, and

a2, respectively.
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Bayesian C-DF

Results

Avg. coverage ¢ | Length | Time (sec) | MSE = Z?:'l(ét — (0)?*/k
t =200 | t =400 | t =500

C-DF 0.870.00 0.530.005 | 85.0505 | 0.77p22 | 0.29.11 | 0.26¢.15
SMCMC 0.92¢ 19 0.520002 | 119.4g43 | 04105 | 0.22544 | 0.200.1¢
ADF 0.360.23 0.800.02 0.880.01 0.42p18 | 0.280.12 | 0.270.11

Table 2: Inferential performance for C-DF, SMCMC, and ADF for parameter . Coverage 1s
based on 95% credible intervals averaged over all time points, all ¢ and over 10 independent
replications. We report the time taken to produce 500 MCMC samples with the arrival of
each data shard. MSE along with associated standard errors are reported at different time

points.
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Figure 2: Row #1 (left to right): Kernel density estimates for posterior draws of (1, s, (1o
using SMCMC and the C-DF algorithm at ¢ = 200,500; Row #2 (left to right): Kernel

density estimates for model parameters 72, and o2 at ¢ = 500.
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Results

‘ Avg. coverage 6 ‘ Length ‘ Time (sec) ‘ MSE
C-DF 0.78p 10 ‘ 0.33g.11 | 1138.60g 10 | 0.011g 001

PL Lo.00 3.360.46 | 1750.580.10 | 0.0960 027

Table 3: Inferential performance for C-DF and Particle Learning. Coverage and length are
based on 95% credible intervals for @; averaged over all time points and 10 independent
replications. For truth #, at time ¢, we report MSE = ﬁ 3:1 (9; — 00)%. We report the
time taken to run C-DF with 50 Gibbs samples at each time for 72, 8, 0 and 500 MH samples

for ¢.
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Results

| Stats | Data | Sample complexity | Update complexity | Memory (bytes)
C-DF | C! | {¥i}isnt—b S(N +G) N 128
PL Cf j {v:}iz1 NG N 3330

Table 4: Computational and storage requirements for the Dynamic Linear Model using C-DF
and PL. C,ij, 1s the -th CSS corresponding to the j-th particle m PL,i=1:4, j=1: N,
N = 100 1s the number of particles propagated by PL., and G = 500 1s the number of
Metropolis samples used by both PL and C-DF. Memory 1n terms of RAM used to store and
propagate SCSS and CSS for C-DF and PL 1s reported. Sampling and update complexities
are 1n terms of big-0.
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Figure 3: Row #1 (left to right): Kernel density estimates for posterior draws of #; using
PL and the C-DF algorithm at ¢ = 1000, 2000, 3000; Row #2 (left to right) plots of model

parameters 72 and ¢, respectively.
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