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About B C-DF

Online Learning <4===m) Batch Learning

« Sequential « Subsequently
* Simultaneously * Calculate at Once



About B C-DF

Key Point of online learning

* By replacing the true Posterior distribution
1. Update approximate posterior

2. Optimal projection into parametric family
(Choosing it to be Gaussian)

* Simultaneously



About B C-DF

In terms of Epistemic Uncertainty
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About B C-DF

MCMC(Markov Chain Monte Carlo)
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0|D;) =
p( | 75) fd@!p(@’)P(Diwf) Elglrcdufgte




About B C-DF

Advantages

1. Simultaneously
2. Serves numerous desirable feature
3. High Dimensional compressed regression



About B C-DF

Existed Methods

ADF(Assumed Density Filtering)
EP(Expectation Propagation)
PL(Particle Learning)

« SMC(Sequential Monte Carlo)



Linear Regression

Training
set

algorithm
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Linear Regression

Cost function
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J(60,61) = 5— > (% — i) =

2m 4

Minimize the cost function



Linear Regression

Gradient Descent

0; :=0; — as2-J(60,61)
where

j=0,1 represents the feature index number.

Trace the minimum value of J



Linear Regression
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Example of B C-DF in Linear Regression

For Gaussian Error Model
y E ER given an associated p-dimensional predictor

%p modeled in the linear regression setting as
x E vy~ NXB 2 ).

y'=X'B+¢€. €~ N(0,0°1,).



Example of B C-DF in Linear Regression

A standard Bayesian analysis proceeds by assigning
conjugate prior (B, 02) ~ N, Ip) x 1G(a, b) with

S — XX 4 xt'xt
f—1 ‘ Parameters of distribution that

XY XY t ot enable online inference using
St7 =8, + X'y MCMC

SYY _ SYY
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Example of B C-DF in Linear Regression

Namely with Standard Conjugation Priors

Gzlﬁa D(t) “"IG(at,bt), at :a—l_nt/Z,

1 / /
by = b+ > (S;" —2B'S + B'SB)
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Example of B C-DF in Linear Regression

Procedure

0. C-DF begins by defining a partition of

modeled parameters

@gl — {ﬁ}
@Qz — {52}*




Example of B C-DF in Linear Regression

Procedure

1. Observe data Dt at time £ At £= 1 initialize all

parameters at some default values.

(eg,B=0,0"=1) '




Example of B C-DF in Linear Regression

Procedure

2. Define first parameter and update

i’ = 1) c

t f—1 A
Cly=C " +X"X'/67, ‘

(t) (t—1) t ot |
C12 C12 +X /Utl




Example of B C-DF in Linear Regression

Procedure

Bloii €7 ~ N(py, Zi)

3. Draw S samples
from the approximate
Gibbs full conditional

(it = (Cﬁ + Ip)_la ﬁt = ErCﬁ)z):




Example of B C-DF in Linear Regression

Procedure

4. Define second parameter and update

(t) _ () () ()
Cz — {C2,1=C2,2=C2,3}
(t) _ A~(t—1) Py 't
G, = C2.,1 + Br—lxt Xtﬁt—p '
Cy,=Cy, " +B_ X"y

() __ —1) tot
C2,3 = Cz,s +yy.




Example of B C-DF in Linear Regression

Procedure

5. Draw S samples from the approximate Gibbs

full conditional

o21B,_y, C ~1G(a), b+ (C) — 2C1), + C))/2)



Example of B C-DF in Linear Regression

Results
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Figure 1. Kernel density estimates for posterior draws using the C-DF algorithm and S-MCMC at t = 200, 500.



Example of B C-DF in Linear Regression

Results

Table 1. Inferential performance for C-DF and S-MCMC for parameters of interest. Coverage and length are based on 95% cradible intervals averaged over all £ i ( j=

1,...,5) and over 10 replications. We repart the time taken to draw M = 500 MCMC samples with the arrival of each data shard. Complexity of sampling A MCMC
samples are also reported under flops. MSE and their standard error are reported at different time points.

MSE = Z?=1(Bg - ﬁu)zfp

Avg. Cov. g Length Time (sec) flops = 200 t =500 t = 1000
C-DF 0.96 0.49; 95,1 M 0.10; o 0.0M4, oo 0.003; 5y
5-MCMC 1.0 0.49, oy m94, ., Mp? 0.06; oy 0.005, ooy 0.003, o,




Result

- Facilitating efficient online Bayesian inference by adapting MCMC
obtained by propagating surrogate statistics as new data arrive.

- Eliminates the need to store or process the entire data at once
which often results in large computational savings.

- Being accompanied with good runtime, memory and sampling
efficiency improvements over various state-of-the-art competitors.
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