Bayesian C-DF

13.12.2018

Academic Seminar

Wonjai Lee

Index

- **1. About B C-DF**
- **2. Linear Regression**
- **3. Bayesian Linear Regression**
- **4. Example of B C-DF in Linear Regression**
- **5. Result**

Online Learning \leftarrow **Batch Learning**

- **Sequential**
- **Simultaneously**
- **Subsequently**
- **Calculate at Once**

Key Point of online learning

- **By replacing the true Posterior distribution**
- **1. Update approximate posterior**
- **2. Optimal projection into parametric family (Choosing it to be Gaussian)**
- **Simultaneously**

In terms of Epistemic Uncertainty

$$
p(\theta|D_t) = \frac{p(\theta)P(D_t|\theta)}{\int d\theta' p(\theta')P(D_t|\theta')}.
$$

MCMC(Markov Chain Monte Carlo)

Advantages

- **1. Simultaneously**
- **2. Serves numerous desirable feature**
- **3. High Dimensional compressed regression**

Existed Methods

- **ADF(Assumed Density Filtering)**
- **EP(Expectation Propagation)**
- **PL(Particle Learning)**
- **SMC(Sequential Monte Carlo)**

Linear Regression

Linear Regression

Cost function

$$
J(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^m\left(\hat{y}_i-y_i\right)^2=\frac{1}{2m}\sum_{i=1}^m\left(h_\theta(x_i)-y_i\right)^2
$$

Minimize the cost function

Linear Regression

Gradient Descent

$$
\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)
$$

where

j=0,1 represents the feature index number.

Trace the minimum value of J

Linear Regression

For Gaussian Error Model

given an associated p -dimensional predictor

 $\mathbf{x} \in \Re^p$

 $y \in \Re$

modeled in the linear regression setting as ^y∼ N(**xβ**, σ2).

 $y^t = X^t \beta + \epsilon, \quad \epsilon \sim N(0, \sigma^2 I_n).$

A standard Bayesian analysis proceeds by assigning conjugate prior $(\beta, \alpha^2) \sim N(0, \beta) \times IG(\alpha, \beta)$ with

$$
\mathbf{S}_{t}^{XX} = \mathbf{S}_{t-1}^{XX} + \mathbf{X}^{t'}\mathbf{X}^{t'}
$$

$$
\mathbf{S}_{t}^{XY} = \mathbf{S}_{t-1}^{XY} + \mathbf{X}^{t'}\mathbf{y}^{t'}
$$

 $S_t^{YY} = S_{t-1}^{YY} + \mathbf{y}^{t'} \mathbf{y}^t$

Parameters of distribution that enable online inference using MCMC

Namely with Standard Conjugation Priors

$$
\sigma^2 | \boldsymbol{\beta}, \mathbf{D}^{(t)} \sim \text{IG}(a_t, b_t), \quad a_t = a + nt/2,
$$

$$
b_t = b + \frac{1}{2} \left(S_t^{YY} - 2\boldsymbol{\beta}' \mathbf{S}_t^{XY} + \boldsymbol{\beta}' \mathbf{S}_t^{XX} \boldsymbol{\beta} \right)
$$

$$
\boldsymbol{\beta}|\sigma^2, \boldsymbol{D}^{(t)} \sim N(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t), \quad \boldsymbol{\Sigma}_t = \left(\mathbf{S}_t^{XX}/\sigma^2 + \boldsymbol{I}_p\right)^{-1}
$$

$$
\boldsymbol{\mu}_t = \boldsymbol{\Sigma}_t \mathbf{S}_t^{XY}/\sigma^2.
$$

Procedure

0. C-DF begins by defining a partition of modeled parameters

$$
\Theta_{\mathcal{G}_1} = {\beta} \n\Theta_{\mathcal{G}_2} = {\sigma^2}.
$$

Procedure

1. Observe data Dt at time t. At t = 1 initialize all parameters at some default values.

(e.g.,
$$
\beta = 0, \sigma^2 = 1
$$
)

Procedure

2. Define first parameter and update

$$
\mathbf{C}_1^{(t)} = \{\mathbf{C}_{1,1}^{(t)}, \mathbf{C}_{1,2}^{(t)}\}
$$

$$
\mathbf{C}_{1,1}^{(t)} = \mathbf{C}_{1,1}^{(t-1)} + \mathbf{X}^{t'} \mathbf{X}^{t} / \hat{\sigma}_{t-1}^2
$$

$$
\mathbf{C}_{1,2}^{(t)} = \mathbf{C}_{1,2}^{(t-1)} + \mathbf{X}^{t'} \mathbf{y}^{t} / \hat{\sigma}_{t-1}^{2}
$$

Procedure

3. Draw S samples from the approximate Gibbs full conditional

$$
\boldsymbol{\beta}|\hat{\sigma}_{t-1}^2, \mathbf{C}_1^{(t)} \sim \mathrm{N}(\hat{\boldsymbol{\mu}}_t, \boldsymbol{\Sigma}_t)
$$

$$
(\hat{\boldsymbol{\Sigma}}_t = (\mathbf{C}_{1.1}^{(t)} + \mathbf{I}_p)^{-1}, \hat{\boldsymbol{\mu}}_t = \hat{\boldsymbol{\Sigma}}_t \mathbf{C}_{1,2}^{(t)}).
$$

Procedure

4. Define second parameter and update

$$
C_2^{(t)} = \{C_{2,1}^{(t)}, C_{2,2}^{(t)}, C_{2,3}^{(t)}\}
$$

\n
$$
C_{2,1}^{(t)} = C_{2,1}^{(t-1)} + \hat{\beta}'_{t-1} X^{t'} X^{t} \hat{\beta}_{t-1},
$$

\n
$$
C_{2,2}^{(t)} = C_{2,2}^{(t-1)} + \beta_{t-1} X^{t'} y^{t}
$$

\n
$$
C_{2,3}^{(t)} = C_{2,3}^{(t-1)} + y^{t'} y^{t}.
$$

Procedure

5. Draw S samples from the approximate Gibbs full conditional

$$
\sigma^2|\hat{\boldsymbol{\beta}}_{t-1}, \mathbf{C}_2^{(t)} \sim \text{IG}(a_t, b + (\text{C}_{2,3}^{(t)} - 2\text{C}_{2,2}^{(t)} + \text{C}_{2,1}^{(t)})/2),
$$

Results

Figure 1. Kernel density estimates for posterior draws using the C-DF algorithm and S-MCMC at $t = 200$, 500.

Results

Table 1. Inferential performance for C-DF and S-MCMC for parameters of interest. Coverage and length are based on 95% credible intervals averaged over all β_i ($j =$ 1, ..., 5) and over 10 replications. We report the time taken to draw $M = 500$ MCMC samples with the arrival of each data shard. Complexity of sampling M MCMC samples are also reported under flops. MSE and their standard error are reported at different time points.

Result

- Facilitating efficient online Bayesian inference by adapting MCMC obtained by propagating surrogate statistics as new data arrive.

- Eliminates the need to store or process the entire data at once which often results in large computational savings.

- Being accompanied with good runtime, memory and sampling efficiency improvements over various state-of-the-art competitors.

Thank you!