Context: Machine Learning for "Big Data"

- Large-scale machine learning: large N, large P
 - N: number of observations (inputs)
 - P: dimension of each observation
- Regularized empirical risk minimization: find x* solution of

$$\min_{\mathbf{x} \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}^T \mathbf{a}_i) + \lambda r(\mathbf{x})$$

data fitting term + regularizer

Context: Machine Learning for "Big Data"

- Large-scale machine learning: large N, large P
 - N: number of observations (inputs)
 - P: dimension of each observation
- Regularized empirical risk minimization: find x* solution of

$$\min_{x \in \mathbb{R}^P} \frac{1}{N} \sum_{i=1}^N \ell(x^T a_i) + \lambda r(x)$$

data fitting term + regularizer

- Applications to any data-oriented field:
 - Vision, bioinformatics, speech, natural language, web.
- Main practical challenges:
 - Choosing regularizer r and data-fitting term ℓ .
 - Designing/learning good features a_i.
 - Efficiently solving the problem when *N* or *P* are very large.

This talk: Big-N Problems

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^P}g(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

This talk: Big-N Problems

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^P}g(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

We are interested in cases where N is very large.

This talk: Big-N Problems

• We want to minimize the sum of a finite set of smooth functions:

$$\min_{x\in\mathbb{R}^P}g(x):=\frac{1}{N}\sum_{i=1}^Nf_i(x).$$

- We are interested in cases where N is very large.
- We will focus on strongly-convex functions *g*.
- Simplest example is ℓ₂-regularized least-squares,

$$f_i(x) := (a_i^T x - b_i)^2 + \frac{\lambda}{2} ||x||^2.$$

- Other examples include any ℓ_2 -regularized convex loss:
 - logistic regression, Huber regression, smooth SVMs, CRFs, etc.

• We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.

- We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

$$x_{t+1} = x_t - \alpha_t g'(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^{N} f'_i(x_t).$$

- Linear convergence rate: $O(\rho^t)$.
- Iteration cost is linear in N.
- Fancier methods exist, but still in O(N)

- We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

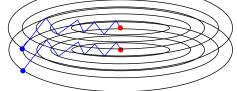
$$x_{t+1} = x_t - \alpha_t g'(x_t) = x_t - \frac{\alpha_t}{N} \sum_{i=1}^{N} f'_i(x_t).$$

- Linear convergence rate: $O(\rho^t)$.
- Iteration cost is linear in N.
- Fancier methods exist, but still in O(N)
- Stochastic gradient method [Robbins & Monro, 1951]:
 - Random selection of i(t) from $\{1, 2, ..., N\}$,

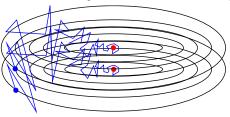
$$x_{t+1} = x_t - \alpha_t f'_{i(t)}(x_t).$$

- Iteration cost is independent of N.
- Sublinear convergence rate: O(1/t).

- We consider minimizing $g(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$.
- Deterministic gradient method [Cauchy, 1847]:

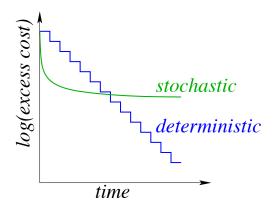


Stochastic gradient method [Robbins & Monro, 1951]:



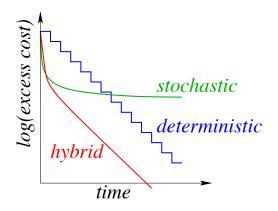
Motivation for New Methods

- FG method has O(N) cost with $O(\rho^t)$ rate.
- SG method has O(1) cost with O(1/t) rate.



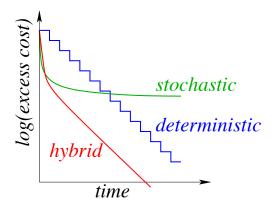
Motivation for New Methods

- FG method has O(N) cost with $O(\rho^t)$ rate.
- SG method has O(1) cost with O(1/t) rate.



Motivation for New Methods

- FG method has O(N) cost with $O(\rho^t)$ rate.
- SG method has O(1) cost with O(1/t) rate.



• Goal is O(1) cost with $O(\rho^k)$ rate.

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
 - Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)
- Stochastic version of accelerated and Newton-like methods
 - Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),
 Martens (2010), Xiao (2010), Duchi et al. (2011)

A variety of methods have been proposed to speed up SG methods:

- Step-size strategies, momentum, gradient/iterate averaging
 - Polyak & Juditsky (1992), Tseng (1998), Kushner & Yin (2003) Nesterov (2009), Xiao (2010), Hazan & Kale (2011), Rakhlin et al. (2012)
- Stochastic version of accelerated and Newton-like methods
 - Bordes et al. (2009), Sunehag et al. (2009), Ghadimi and Lan (2010),
 Martens (2010), Xiao (2010), Duchi et al. (2011)
- None of these methods improve on the O(1/t) rate

Existing linear convergence results:

- Constant step-size SG, accelerated SG
 - Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
 - Linear convergence up to a fixed tolerance: $O(\rho^t) + O(\alpha)$.
- Hybrid methods, incremental average gradient
 - Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
 - Linear rate but iterations make full passes through the data

Existing linear convergence results:

- Constant step-size SG, accelerated SG
 - Kesten (1958), Delyon and Juditsky (1993), Nedic and Bertsekas (2000)
 - Linear convergence up to a fixed tolerance: $O(\rho^t) + O(\alpha)$.
- Hybrid methods, incremental average gradient
 - Bertsekas (1997), Blatt et al. (2007), Friedlander and Schmidt (2012)
 - Linear rate but iterations make full passes through the data
- Special Problems Classes
 - Collins et al. (2008), Strohmer & Vershynin (2009), Schmidt and Le Roux (2012), Shalev-Shwartz and Zhang (2012)
 - Linear rate but limited choice for the fi's

- Assume only that:
 - f_i is convex, f_i' is L-continuous, g is μ -strongly convex.

- Assume only that:
 - f_i is convex, f_i' is L—continuous, g is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?

- Assume only that:
 - f_i is convex, f_i' is L—continuous, g is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?
 - YES!

- Assume only that:
 - f_i is convex, f'_i is L-continuous, g is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., N\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^{N} f_i'(x^t)$$

- Assume only that:
 - f_i is convex, f'_i is L-continuous, g is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., N\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N y_i^t$$

- Assume only that:
 - f_i is convex, f'_i is L-continuous, g is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., N\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N y_i^t$$

• **Memory**: $y_i^t = f_i'(x^t)$ from the last iteration t where i was selected.

- Assume only that:
 - f_i is convex, f'_i is L-continuous, g is μ -strongly convex.
- Is it possible to have an $O(\rho^t)$ rate with an O(1) cost?
 - YES! The stochastic average gradient (SAG) algorithm:
 - Randomly select i(t) from $\{1, 2, ..., N\}$ and compute $f'_{i(t)}(x^t)$.

$$x^{t+1} = x^t - \frac{\alpha^t}{N} \sum_{i=1}^N y_i^t$$

- **Memory**: $y_i^t = f_i'(x^t)$ from the last iteration t where i was selected.
- Assumes that gradients of other examples don't change.
- This assumption becomes accurate as $||x^{t+1} x^t|| \to 0$.
- Stochastic variant of increment aggregated gradient (IAG).
 [Blatt et al. 2007]

Assume only that:

• f_i is convex, f'_i is L-continuous, some x^* exists.

Assume only that:

• f_i is convex, f'_i is L-continuous, some x^* exists.

Theorem. With $\alpha_t \leqslant \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] = O(1/t)$$

• Faster than SG lower bound of $O(1/\sqrt{t})$.

Assume only that:

• f_i is convex, f'_i is L-continuous, some x^* exists.

Theorem. With $\alpha_t \leqslant \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] = O(1/t)$$

- Faster than SG lower bound of $O(1/\sqrt{t})$.
- Same algorithm and step-size as strongly-convex case:
 - Algorithm is adaptive to strong-convexity.
 - Faster convergence rate if μ is locally bigger around x^* .

Assume only that:

• f_i is convex, f'_i is L-continuous, some x^* exists.

Theorem. With $\alpha_t \leqslant \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] = O(1/t)$$

- Faster than SG lower bound of $O(1/\sqrt{t})$.
- Same algorithm and step-size as strongly-convex case:
 - Algorithm is adaptive to strong-convexity.
 - Faster convergence rate if μ is locally bigger around x^* .
- Same algorithm could be used in non-convex case.

Assume only that:

• f_i is convex, f'_i is L-continuous, some x^* exists.

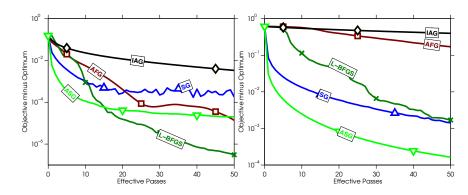
Theorem. With $\alpha_t \leqslant \frac{1}{16L}$ the SAG iterations satisfy

$$\mathbb{E}[g(x^t) - g(x^*)] = O(1/t)$$

- Faster than SG lower bound of $O(1/\sqrt{t})$.
- Same algorithm and step-size as strongly-convex case:
 - Algorithm is adaptive to strong-convexity.
 - Faster convergence rate if μ is locally bigger around x*.
- Same algorithm could be used in non-convex case.
- Contrast with stochastic dual coordinate ascent:
 - Requires explicit strongly-convex regularizer.
 - Not adaptive to μ , does not allow $\mu = 0$.

Comparing FG and SG Methods

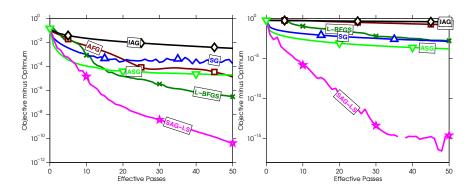
• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)



Comparison of competitive deterministic and stochastic methods.

SAG Compared to FG and SG Methods

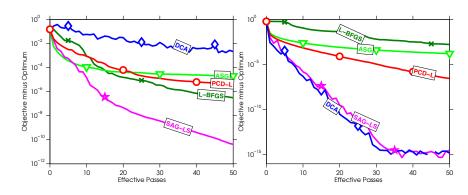
• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)



• SAG starts fast and stays fast.

SAG Compared to Coordinate-Based Methods

• quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)



PCD/DCA are similar on some problems, much worse on others.

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $y_i = f_i'(x)$.
 - $x = x \frac{\alpha}{N}d$.

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $\bullet \ d = d y_i + f_i'(x).$
 - $y_i = f'_i(x)$.
 - $x = x \frac{\alpha}{N}d$.
- Issues:
 - Should we normalize by N?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $\bullet \ d = d y_i + f_i'(x).$
 - $\mathbf{y}_i = f_i'(\mathbf{x})$.
 - $x = x \frac{\alpha}{N}d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $\mathbf{y}_i = f_i'(\mathbf{x})$.
 - $x = x \frac{\alpha}{N} d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f_i'(x)$.
 - $\mathbf{y}_i = f_i'(\mathbf{x})$.
 - $x = x \frac{\alpha}{N} d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f_i'(x)$.
 - $\bullet \ \mathbf{y}_i = f_i'(\mathbf{x}).$
 - $x = x \frac{\alpha}{N} d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $\mathbf{y}_i = f_i'(\mathbf{x})$.
 - $x = x \frac{\alpha}{N} d$.
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?
 - Can we use mini-batches?

- while(1)
 - Sample *i* from $\{1, 2, ..., N\}$.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $\bullet \ \mathbf{y}_i = f_i'(\mathbf{x}).$
 - $\bullet \ \ X = X \tfrac{\alpha}{N} d.$
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?
 - Can we use mini-batches?
 - Can we handle constraints or non-smooth problems?

- while(1)
 - Sample *i* from {1, 2, ..., *N*}.
 - Compute $f'_i(x)$.
 - $d = d y_i + f'_i(x)$.
 - $\bullet \ \mathbf{y}_i = f_i'(\mathbf{x}).$
 - $\bullet \ \ X = X \tfrac{\alpha}{N} d.$
- Issues:
 - Should we normalize by N?
 - Can we reduce the memory?
 - Can we handle sparse data?
 - How should we set the step size?
 - When should we stop?
 - Can we use mini-batches?
 - Can we handle constraints or non-smooth problems?
 - Should we shuffle the data?

Implementation Issues: Normalization

- Should we normalize by N in the early iterations?
- The parameter update:
 - $x = x \frac{\alpha}{N}d$.

Implementation Issues: Normalization

- Should we normalize by N in the early iterations?
- The parameter update:
 - $x = x \frac{\alpha}{M}d$.
- We normalize by number of examples seen (M).
- Better performance on early iterations.
- Similar to doing one pass of SG.

- Can we reduce the memory?
- The memory update for $f_i(a_i^T x)$:
 - Compute $f'_i(a_i^T x)$.
 - $\bullet \ d = d + f_i'(a_i^T x) y_i.$
 - $\bullet \ y_i = f_i'(a_i^T x).$

- Can we reduce the memory?
- The memory update for $f_i(a_i^T x)$:
 - Compute $f'_i(\delta)$, with $\delta = a_i^T x$.
 - $\bullet \ d = d + a_i(f'(\delta) y_i).$
 - $y_i = f_i'(\delta)$.
- Use that $f'_i(a_i^T x) = a_i f'_i(\delta)$.

- Can we reduce the memory?
- The memory update for $f_i(a_i^T x)$:
 - Compute $f'_i(\delta)$, with $\delta = a_i^T x$.
 - $\bullet \ d = d + a_i(f'(\delta) y_i).$
 - $y_i = f'_i(\delta)$.
- Use that $f'_i(a_i^T x) = a_i f'_i(\delta)$.
- Only store the scalars $f'_i(\delta)$.
- Reduces the memory from O(NP) to O(N).

- Can we reduce the memory in general?
- We can re-write the SAG iteration as:

$$x^{t+1} = x^t - \frac{\alpha_t}{N} \left(f'_i(x^t) - f'_i(x^i) + \sum_{j=1}^N f'_j(x^j) \right).$$

- Can we reduce the memory in general?
- We can re-write the SAG iteration as:

$$x^{t+1} = x^t - \frac{\alpha_t}{N} \left(f'_i(x^t) - f'_i(x^i) + \sum_{j=1}^N f'_j(x^j) \right).$$

The SVRG/mixedGrad method ('memory-free methods'):

$$x^{t+1} = x^t - \alpha \left(f_i'(x^t) - f_i'(\tilde{x}) + \frac{1}{N} \sum_{j=1}^N f_j'(\tilde{x}) \right),\,$$

where we occasionally update \tilde{x} .

[Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and Richtarik, 2013, Xiao and Zhang, 2014]

- Can we reduce the memory in general?
- We can re-write the SAG iteration as:

$$x^{t+1} = x^t - \frac{\alpha_t}{N} \left(f'_i(x^t) - f'_i(x^i) + \sum_{j=1}^N f'_j(x^j) \right).$$

The SVRG/mixedGrad method ('memory-free methods'):

$$x^{t+1} = x^t - \alpha \left(f_i'(x^t) - f_i'(\tilde{x}) + \frac{1}{N} \sum_{j=1}^N f_j'(\tilde{x}) \right),\,$$

where we occasionally update \tilde{x} .

[Mahdavi et al., 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konecny and Richtarik, 2013, Xiao and Zhang, 2014]

• Gets rid of memory for two f'_i evaluations per iteration.

Implementation Issues: Sparsity

- Can we handle sparse data?
- The parameter update for each variable *j*:
 - $\bullet \ \ \textit{x}_{\textit{j}} = \textit{x}_{\textit{j}} \tfrac{\alpha}{\textit{M}} \frac{\textit{d}_{\textit{j}}}{\textit{d}_{\textit{j}}}.$

Implementation Issues: Sparsity

- Can we handle sparse data?
- The parameter update for each variable j:

•
$$x_i = x_i - \frac{k\alpha}{M} d_i$$
.

- For sparse data, d_i is typically constant.
- Apply previous k updates when it changes.

Implementation Issues: Sparsity

- Can we handle sparse data?
- The parameter update for each variable j:

$$\bullet \ \ \textit{X}_{\textit{j}} = \textit{X}_{\textit{j}} - \frac{\textit{k}\alpha}{\textit{M}}\textit{d}_{\textit{j}}.$$

- For sparse data, di is typically constant.
- Apply previous k updates when it changes.
- Reduces the iteration cost from O(P) to $O(\|f_i'(x)\|_0)$.
- Standard tricks allow ℓ_2 -regularization and ℓ_1 -regularization.

• How should we set the step size?

- How should we set the step size?
 - Theory: $\alpha = 1/16L$.
 - Practice: $\alpha = 1/L$.

- How should we set the step size?
 - Theory: $\alpha = 1/16L$.
 - Practice: $\alpha = 1/L$.
- What if L is unknown or smaller near x*?

- How should we set the step size?
 - Theory: $\alpha = 1/16L$.
 - Practice: $\alpha = 1/L$.
- What if L is unknown or smaller near x*?
 - Start with a small L.
 - Increase L until we satisfy:

$$f_i(x-\frac{1}{L}f_i'(x)) \leq f_i'(x)-\frac{1}{2L}\|f_i'(x)\|^2.$$

(assuming
$$||f_i'(x)||^2 \ge \epsilon$$
)

• Decrease L between iterations.

(Lipschitz approximation procedure from FISTA)

- How should we set the step size?
 - Theory: $\alpha = 1/16L$.
 - Practice: $\alpha = 1/L$.
- What if L is unknown or smaller near x*?
 - Start with a small L.
 - Increase L until we satisfy:

$$f_i(x-\frac{1}{L}f_i'(x)) \leq f_i'(x)-\frac{1}{2L}\|f_i'(x)\|^2.$$

(assuming
$$||f_i'(x)||^2 \ge \epsilon$$
)

Decrease L between iterations.

(Lipschitz approximation procedure from FISTA)

• For $f_i(a_i^T x)$, this costs O(1) in N and P:

$$f_i(a_i^T x - \frac{f_i'(\delta)}{L} ||a_i||^2).$$

• When should we stop?

- When should we stop?
- Normally we check the size of ||f'(x)||.

- When should we stop?
- Normally we check the size of ||f'(x)||.
- And SAG has $y_i \rightarrow f'_i(x)$.

- When should we stop?
- Normally we check the size of ||f'(x)||.
- And SAG has $y_i \rightarrow f'_i(x)$.
- We can check the size of $\|\frac{1}{N}d\| = \|\frac{1}{N}\sum_{i=1}^{N}y_i\| \to \|f'(x)\|$

For composite problems with non-smooth regularizers r,

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x) + r(x).$$

• For composite problems with non-smooth regularizers r,

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x) + r(x).$$

• We can do a proximal-gradient variant when r is simple:

$$x = \operatorname{prox}_{\alpha r(\cdot)}[x - \frac{\alpha}{N}d].$$

[Mairal, 2013, 2014, Xiao and Zhang, 2014, Defazio et al., 2014]

- E.g., with $r(x) = \lambda ||x||_1$: stochastic iterative soft-thresholding.
- Same converge rate as smooth case.

For composite problems with non-smooth regularizers r,

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x) + r(x).$$

• We can do a proximal-gradient variant when r is simple:

$$x = \operatorname{prox}_{\alpha r(\cdot)}[x - \frac{\alpha}{N}d].$$

[Mairal, 2013, 2014, Xiao and Zhang, 2014, Defazio et al., 2014]

- E.g., with $r(x) = \lambda ||x||_1$: stochastic iterative soft-thresholding.
- Same converge rate as smooth case.
- Exist ADMM variants when r is simple/linear composition, r(Ax). [Wong et al., 2013]

For composite problems with non-smooth regularizers r,

$$\min_{x} \frac{1}{N} \sum_{i=1}^{N} f_i(x) + r(x).$$

• We can do a proximal-gradient variant when r is simple:

$$x = \operatorname{prox}_{\alpha r(\cdot)}[x - \frac{\alpha}{N}d].$$

[Mairal, 2013, 2014, Xiao and Zhang, 2014, Defazio et al., 2014]

- E.g., with $r(x) = \lambda ||x||_1$: stochastic iterative soft-thresholding.
- Same converge rate as smooth case.
- Exist ADMM variants when r is simple/linear composition, r(Ax). [Wong et al., 2013]
- If f_i are non-smooth, could smooth them or use dual methods.
 [Nesterov, 2005, Lacoste-Julien et al., 2013, Shalev-Schwartz and Zhang, 2013]

Does re-shuffling and doing full passes work better?

- Does re-shuffling and doing full passes work better?
 - NO!

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - Bias sampling towards Lipschitz constants L_i.

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - Bias sampling towards Lipschitz constants L_i.
 - Justification: duplicate examples proportional to L_i:

$$\frac{1}{N}\sum_{i=1}^{N}f_{i}(x)=\frac{1}{\sum L_{i}}\sum_{i=1}^{N}\sum_{j=1}^{L_{i}}L_{\text{mean}}\frac{f_{i}(x)}{L_{i}},$$

convergence rate depends on L_{mean} instead of L_{max} .

- Does re-shuffling and doing full passes work better?
 - NO!
 - Performance is intermediate between IAG and SAG.
- Can non-uniform sampling help?
 - Bias sampling towards Lipschitz constants L_i.
 - Justification: duplicate examples proportional to L_i:

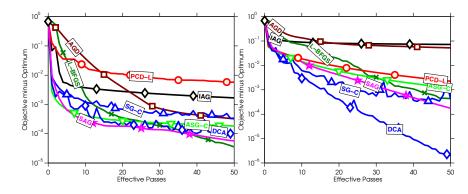
$$\frac{1}{N} \sum_{i=1}^{N} f_i(x) = \frac{1}{\sum L_i} \sum_{i=1}^{N} \sum_{j=1}^{L_i} L_{\text{mean}} \frac{f_i(x)}{L_i},$$

convergence rate depends on L_{mean} instead of L_{max} .

 Combine with the line-search for adaptive sampling. (see paper/code for details)

SAG with Non-Uniform Sampling

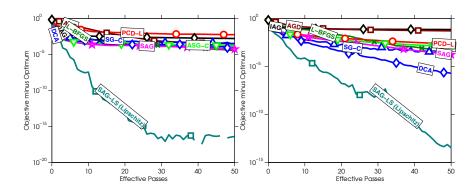
• protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)



Datasets where SAG had the worst relative performance.

SAG with Non-Uniform Sampling

• protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)



• Lipschitz sampling helps a lot.

Newton-like Methods

• Can we use a scaling matrix H?

$$x = x - \frac{\alpha}{N} H^{-1} d.$$

Newton-like Methods

• Can we use a scaling matrix *H*?

$$x = x - \frac{\alpha}{N} H^{-1} d.$$

- Didn't help in my experiments with diagonal H.
- Non-diagonal will lose sparsity.

Newton-like Methods

Can we use a scaling matrix H?

$$x = x - \frac{\alpha}{N} H^{-1} d.$$

- Didn't help in my experiments with diagonal H.
- Non-diagonal will lose sparsity.
- Quasi-Newton method proposed that has empirically-faster convergence, but much overhead.

[Sohl-Dickstein et al., 2014]

• Faster theoretical convergence using only the 'sum' structure.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.
- Recent/current developments:
 - Memory-free variants.
 - Non-smooth variants.
 - Improved constants.
 - Relaxed strong-convexity.
 - Non-uniform sampling.
 - Quasi-Newton variants.

- Faster theoretical convergence using only the 'sum' structure.
- Simple algorithm, empirically better than theory predicts.
- Black-box stochastic gradient algorithm:
 - Adaptivity to problem difficulty, line-search, termination criterion.
- Recent/current developments:
 - Memory-free variants.
 - Non-smooth variants.
 - Improved constants.
 - Relaxed strong-convexity.
 - Non-uniform sampling.
 - Quasi-Newton variants.
- Future developments:
 - Non-convex analysis.
 - Parallel/distributed methods.