Distributed Representations
for Natural Language
Processing

Structure of this talk
* Why

 Word2vec

e Architecture
e Evaluation
* Examples

* Discussion

Why?

Representation of text is very important for performance of many

ﬁal-world applications: search, ads recommendation, ranking, spam
litering, ...

* Local representations
* N-grams
* 1-of-N coding
* Bag-of-words
* Continuous representations

* Distributed Representations
e Other

Distributed representations

* We hope to learn such representations so that Prague, Rome,
Berlin, Paris etc. will be close to each other

* We do not want just to cluster words: we seek representations that
can capture multiple degrees of similarity: Prague is similar to Berlin
in some way, and to Czech Republic in another way

* Can this be even done without manually created databases like
Wordnet / Knowledge graphs?

Word2vec

Two basic architectures:
 Skip-gram
e CBOW

Skip-gram Architecture

Input projection output

W(t-2)

w(t) M

’

w(t+1)

w(t+2)

* Predicts the surrounding words given the current
word

Continuous Bag-of-words Architecture

Input projection output

w(t-2) | |

w(t-1) ||

w(t)

w(t+1) ||

w(t+2) |

* Predicts the current word by the given context

Word2vec

The user word2vec has the ability to switch and choose between algorithms.

The word order of the context does not affect the result in any of these
algorithms.

The resulting coordinate representations of word vectors allow us to calculate the
“semantic distance” between words.

And, precisely based on the contextual proximity of these words, the word2vec
technology makes its predictions.

To achieve its most effective work, it is necessary to use large buildings for its
training.
=> This will improves the quality of predictions.

Summary

* Word2vec: much faster and way more accurate than previous neural net

based solutions - speed up of training compared to prior state of artis more
than 10 000 times

* Features derived from word2vec are now used across all big IT companies in
plenty of applications (search, ads, ..)

* Very popular also in research community: simple way how to boost
performance in many NLP tasks

* Main reasons of success: very fast, open-source, easy to use the resulting
features to boost many applications (even non-NLP)

Final notes

* Word2vec is successful because it is simple

* For modeling sequences of words

* Do not sum word vectors to obtain representations of sentences

