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Generative image modeling is an unsupervised learning problem.

Probablistic Density Models :
Image Compression
Debluring
Generating of new images,etc

Obstacle in Generative modeling :
To build complex and expressive models that are tractable and scalable. This
balance has resulted in a large variety of generative models.
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Stochastic latent variable models such as VAE’s :
Extract meaningful representation
but not tractable inference

So What is the best model ?
The best approach is to use product of conditional distributions.It is used in
models such as NADE.

RNNs :
Are powerful models that are used for :
-Handwriting generation
-Character prediction
-Machine Translation
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Generating an Image Pixel by Pixel :

During training and evaluation the distributions over the pixel values are
computed in parallel, while the generation of an image is sequential.

OMID RAZIZADEH (Novosibirsk State University) Pixel Recurrent Neural Networks 5 / 14



Row LSTM :
is a unidirectional layer
process row by row from top to bottom
computing features for a whole row at once
computation is performed with a one-dimensional convolution
kernel has size k × 1 where k ≥ 3
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Diagonal BiLSTM :
capture the entire available context for any image size
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Residual Connections :
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Masked Convolution :
masks can be easily implemented by zeroing out the corresponding weights in the
input-to-state convolutions after each update
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Evaluation :
All models are trained and evaluated by log-likelihood loss function coming from
discrete distribution not continuous distributions using density function.
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Performance of different models on MNIST :
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Performance of different models on CIFAR-10 :
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Conclusion :
two-dimensional LSTM layers : the Row LSTM and the Diagonal BiLSTM,
that scale more easily to larger datasets.
We employed masked convolutions to allow PixelRNNs to model full
dependencies between the color channels.
PixelRNNs significantly improve the state of the art on the MNIST and
CIFAR-10 datasets.
PixelRNNs are able to model both spatially local and long-range correlations
and are able to produce images.that are sharp and coherent.
More computation and larger models are likely to further improve the results.
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