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Related works

Methods include autoencoders(Socher et al., 2011; Hill et al., 2016)

Methods include other learning frameworks using raw text (Le & Mikolov, 2014; Pham et al., 2015; Jernite et al., 2017;
Pagliardini et al., 2017)

Methods include a collection of books (Kiros et al., 2015)

Methods include labelled entailment corpora (Conneau et al., 2017)
Methods include image-caption data (Kiela et al., 2017)

Methods include raw text labelled with discourse relations (Nie et al., 2017)
Methods include parallel corpora (Wieting & Gimpel, 2017)

Multi-task combinations of these approaches (Subramanian et al., 2018; Cer et al., 2018)




Approach

In this paper, three architectures that produce sentence embeddings from pre-trained word embeddings,
without requiring any training of the encoder itself were explored. These sentence embeddings are then used
as features for a collection of downstream tasks. The downstream tasks are all trained with a logistic
regression classifier using the default settings of the SentEval framework. The parameters of this classifier are
the only ones that are updated during training.




RANDOM SENTENCE ENCODERS

They are concerned with obtaining a good sentence representation h that is computed using some function f

parameterized by 6 over pre-trained input word embeddings e € L, i.e. h = fB(el, . . . , en) where ei is the
embedding for the i-th word in a sentence of length n. Typically, sentence encoders learn 0, after which it is
kept fixed for the transfer tasks. InferSent represents a sentence as f = max(BiLSTM(el, . . . , en)) and
optimizes the parameters using a supervised cross-entropy objective for predicting one of three labels from a
combination of two sentence representations: entailment, neutral or contradictive. SkipThought represents a
sentence as f = GRUn(el, . . ., en), with the objective of being able to decode the previous and next utterance
using negative log-likelihood from the final (i.e., n-th) hidden state. InferSent requires large amounts of
expensive annotation, while SkipThought takes a very long time to train. They experiment with three methods
for computing h: Bag of random embedding projections, Random LSTMs, and Echo State Networks.




BAG OF RANDOM EMBEDDING
PROJECTIONS (BOREP)

The first family of architectures we explore consists of simply applying a single random projection
in a standard bag-of-words (or more accurately, bag-of-embeddings) model. We randomly initialize
a matrix W € RP*4 where D is the dimension of the projection and d is the dimension of our
input word embedding. The values for the matrix are sampled uniformly from [— 7‘;, 715], which is

a standard initialization heuristic used in neural networks (Glorot & Bengio, 2010). The sentence
representation is then obtained as follows:

h = fpool("vei)a

where f,..1 is some pooling function, e.g. fpooi(z) = X_(x), fpoot(z) = max(z) (max pooling)
of froot(z) = |x|7* Y_(z) (mean pooling). Optionally, we impose a nonlinearity max(0, h). We
experimented with imposing positional encoding for the word embeddings, but did not find this to
help.




RANDOM LSTMS

Following InferSent, we employ bidirectional LSTMs, but in our case without any training. Conneau
et al. (2017) reported good performance for the random LSTM model on the transfer tasks. The
LSTM weight matrices and their corresponding biases are initialized uniformly at random from
(=7 73], where d is the hidden size of the LSTM. In other words, the architecture here is the

same as that of InferSent modulo the type of pooling used:

h = froa(BILSTM(e,,...,e,)).




ECHO STATE NETWORKS

Echo State Networks (ESNs) (Jaeger, 2001) were primarily designed for sequence prediction prob-
lems, where given a sequence X, we predict a label y for each step in the sequence. The goal is to

minimize the error between the predicted 7 and the target y at each timestep. Formally, an ESN is
described using the following update equations:

t-l,' = f,,oo;(W'ei + “"hh,..l + b')
h,‘ = (1 - a)h,-l +Qfl,',




4096 dimensions with the exception of BOE (300) and ST-LN

Performance on all ten downstream tasks where all models have

(4800)
Model | Dim MR CR MPQA SUBJ SST2  IREC SICK-R SICK-E MRPC STSB
BOE | 300 77.3(.2) 78.6(3) 87.6(.1) 913(.1) BO.X.S) SL1.5(8) 802(.1) 7T87(1) 729(3) T0.5.1)
BOREP 4096 TT7.4(4) T9.5(.2) SB8.3(.2) 91.9(.2) BLB(4) B8.8(3) 855(.1) B2I(T) 739(4) 6R5(.6)
RandLST™ 4096 77.2(.3) 78.7(S) STS(1) 91.9(.2) B1.S5(3) 86.5(1.1) B55(.1) BLE(S) T4.1(S) T24(5)
ESN 4096 78.1(.3) B0.0(.6) S8.5(.2) 92.6(.1) BIIS) B7.9(1.0) 86.1(.1) Bil(4) 734(4) T4.4.3)
InferSent-1 = paper, G 4096 81.1 86.3 90.2 924 84.6 88.2 8§83 863 762 75.6
InferSent-2 = fixed pad, F [ 4096 79.7 84.2 894 92.7 84.3 90.8 888 86.3 76.0 T84
InferSent-3 = fixed pad, G [ 4096 79.7 83.4 889 92.6 83.5 90.8 88.5 841 6.4 773
A lnferSent-3, BestRand | - 16 34 04 o0 0.5 2.0 24 1.0 23 29
ST-LN 4500 794 83.1 893 93.7 829 884 858 795 732 6R.9
A ST-LN, BestRand - 1.3 N (L8 1.1 0.1 0.5 0.3 -3.6 0.9 -5.5




EVALUATION

In our experiments, we evaluate on a standard sentence representation benchmark using SentEval (Conneau &
Kiela, 2018). SentEval allows for evaluation on both downstream NLP datasets as well as probing tasks,
which measure how accurately a representation can predict linguistic information about a given sentence. The
set of downstream tasks we use for evaluation comprises sentiment analysis (MR, SST), question-type
(TREC), product reviews (CR), subjectivity (SUBJ), opinion polarity (MPQA), paraphrasing (MRPC),
entailment (SICK-E, SNLI) and semantic relatedness (SICK-R, STSB). The probing tasks consist of those in
Conneau et al. (2018). We use the default SentEval settings (see Appendix A).




RESULTS

They compare primarily to two well-studied sentence embedding models, InferSent (Conneau et al., 2017) and
SkipThought (Kiros et al., 2015) with layer normalization (Ba et al., 2016). There are recently introduced
multi-task sentence encoders that improve performance further, but these either do not use pre-trained word
embeddings. They compute the average accuracy/Pearson’s r, along with the standard deviation, over 5
different seeds for the random methods, and tune on validation for each task.




TAKING COVER TO THE MAX

If we take Cover’s theorem to the limit, we can project to an even higher-dimensional representation as long as
we can still easily fit things onto a modern GPU: hence, we project to 4096 x 6 (24576) dimensions instead of
the 4096 dimensions we used in previous table. In order to make for a fair comparison, we can also randomly
project InferSent and SkipThought representations to the same dimensionality and examine performance.




Performance on all ten downstream
tasks

Model | MR CR MPQA SUBJ SST2  TREC SICK-R SICK-E MRPC STSB
BOE | 77.3(.2) 78.6(.3) B7.6(.1) 913(.1) B0O.O(S) SLS(.E) 80.2(.1) 787(.1) 72.9(3) 70.5(.1)
BOREP TE6(.2) T9.9(.4) BRB(1) 93.0(.1) B25(.8B) S9.5(1.3) 859(.0) B43(3) 73.7(9) 68.3(5)
RandLSTM TR2.2Z) T99(.4) BB2(2) 92.8(.2) B32(4) SBA.7) 86.6(.1) B39 74.7(4) 73.6(4)
ESN 79.1(.2) 80.2(.3) BE9(.1) 93.4(.2) B4.6(5) 92.2(8) 87.2(1) B51(2) 753(6) 73.1(2)
InterSent-3 4096 x 6 | 79.7 839 89.1 92.8 824 90.6 9.5 859 751 750
ST-LN 4096 x 6 75.2 80.8 86.8 92.7 80.6 S84 829 813 715 67.0

projected to this dimension with a random projection.
projection in fact appears to be detrimental to InferSent and SkipThought performance. The numbers reported in
the table are competitive with (older) much more sophisticated trained methods.

Standard deviations are show in parentheses. All models have 4096x6 dimensions. ST-LN and InferSent-3 were

Interestingly, the gap seems to get smaller, and the




Performance while varying dimensionality,
for the three random sentence encoders
over all ten downstream tasks.
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ANALYSIS

They analyze random sentence embeddings by examining how these embeddings perform on the probing tasks
introduced by Conneau et al. (2018), in order to gauge what properties of sentences they are able to recover.
These probing tasks were introduced in order to provide a framework for ascertaining the linguistic properties
of sentence embeddings, comprising three types of information: surface, syntactic and semantic information.




Performance on a set of probing tasks defined in

Model | Sentlen WC  TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO Coordlav
BOE (3004, class.) 60.5 87.5 320 62.7 500 837 780 16.6 S0.5 538
BOREP (4096, class.) 644 971 330 713 498 863 ELS 9.3 9.5 54.1
RandLSTM (40964, class.) | 72.8 .1 356 76.2 552 866 B40 9.5 497 63.1
ESN (40964, class.) 8.8 924 369 76.2 629 866 K23 9.7 497 60.3
Infersent-3 80.6 935 1371 8.2 573 868 B4R 80.5 530 658
ST-LN 9.9 ™Y B5 821 694 902 862 834 545 689

This table shows the performance of the random sentence encoders (using the best-overall model tuned on the
classification validation sets of the SentEval tasks) on these probing tasks along with bag-ofembeddings (BOE),
SkipThought-LN, and InferSent. From the table, we see that ESNs and RandLSTMs outperform BOE and BOREP
on most of the tasks, especially those that require knowledge of the order of the words. This indicates that these
models, even though initialized randomly, are capturing order, as one would expect. We also see that ESNs and
InferSent are fairly close on many of the tasks, with Skipthought-LN generally outperforming both.




DISCUSSION

List several take-away messages with regard to sentence embeddings:

e Ifyouneed a baseline for your sentence encoder, don’t just use BOE, use BOREP of the same dimension,
and/or a randomly initialized version of your encoder.

e I[fyou are pressed for time and have a small to mid-size dataset, simply randomly project to a very high
dimensionality, and profit.

e More dimensions in the encoder is usually better (up to a point).

e If you want to show that your system is better than another system, use the same classifier on top with the
same hyperparameters; and use the same word embeddings at the bottom; while having the same sentence
embedding dimensionality.

e Be careful with padding, pooling and sorting: you may inadvertently end up favoring certain methods on some

tasks, making it harder to identify sources of improvement.




CONCLUSION

In this work they have sought to put sentence embeddings on more solid footing by examining how much
trained sentence encoders improve over random sentence encoders. As it turns out, differences exist, but are
smaller than they would have hoped: in comparison to sentence encoders such as SkipThought (which was
trained for a very long time) and InferSent (which requires large amounts of annotated data), performance
improvements are less than 2 points on average over the 10 SentEval tasks. Therefore one may wonder to what
extent sentence encoders are worth the attention they’re receiving. Hope remains, however, if they as a
community start focusing on more sophisticated tasks that require more sophisticated learned representations
that cannot merely rely on having good pre-trained word embeddings.




