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Machine learning in intrusion detection
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© Challenges of using machine learning
Outlier Detection

High Cost of errors

Semantic gap

Diversity of network Traffic
Difficulties with Evaluation

% Novosibirsk
State
University

*THE REAL SCIENCE

Robin Sommer, Vern Paxson (ICSI) ML For Network Intrusion Detection May 16, 2019 8 /14



Challenges of using machine learning
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High Cost of errors
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Semantic Gap
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Diversity of network Traffic
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@ Recommendations for using machine learning
@ Understanding the Threat Model
o Keeping the scope Narrow
@ Reducing the costs
@ Evaluation
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