### Universal Sentence Encoder

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan,Chris Tar, Yun-Hsuan Sung, Brian Strope, Ray Kurzweil

February 28, 2019

# Transfer Learning



Figure: Transfer learning is machine learning with an additional source of information apart from the standard training data: knowledge from one or more related tasks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Transfer Learning



Figure: Three ways in which transfer might improve learning.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## Transfer Learning in NLP tasks

#### transfer learning using sentence embeddings

(ロ)、

transfer learning using word embeddings



990

#### Transformer model

- high accuracy
- greater model complexity
- greater resource consumption
- Deep Averaging Network (DAN) model

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- efficient inference
- slightly reduced accuracy

Transformer

Constructs sentence embeddings using the encoding sub-graph of the transformer architecture (Vaswani et al., 2017).

- input: PTB tokenized string.
- 1) compute context aware representations of words (ordering and identity)
- 2) representations (1) are converted to a fixed length vector (sentence encoding): element-wise sum of the representations at each word position
- output: 512 dimensional vector as the sentence embedding.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Deep Averaging Network (DAN)

Makes use of a deep averaging network (DAN) (lyyer et al., 2015).

- input: PTB tokenized string.
- ▶ 1) embeddings for words and bi-grams are averaged together
- 2) (1) passed through a feedforward deep neural network (DNN)
- output: 512 dimensional vector as the sentence embedding.

## Transfer Tasks. Transfer Learning Models

- sentence classification tasks: DNN
- pairwise semantic similarity task:  $sim(u, v) = (1 - \arccos(\frac{u \cdot v}{\|u\| \|v\|})/\pi)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Transfer Tasks. Transfer Learning Models

Baselines

- sentence + word level transfer
  - DNN
    - DAN model encoder
    - Transformer model encoder
  - CNN
    - DAN model encoder
    - Transformer model encoder
- sentence level transfer
  - DNN
    - DAN model encoder
    - Transformer model encoder
  - CNN
    - DAN model encoder
    - Transformer model encoder

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- word level transfer
  - DNN
  - CNN
- no transfer
  - DNN
  - CNN

# Model performance on transfer tasks

| Model                                       | MR    | CR    | SUBJ  | MPQA  | TREC  | SST   | STS Bench         |  |  |  |  |  |
|---------------------------------------------|-------|-------|-------|-------|-------|-------|-------------------|--|--|--|--|--|
|                                             |       |       |       |       |       |       | (dev / test)      |  |  |  |  |  |
| Sentence & Word Embedding Transfer Learning |       |       |       |       |       |       |                   |  |  |  |  |  |
| USE_D+DAN (w2v w.e.)                        | 77.11 | 81.71 | 93.12 | 87.01 | 94.72 | 82.14 | -                 |  |  |  |  |  |
| USE_D+CNN (w2v w.e.)                        | 78.20 | 82.04 | 93.24 | 85.87 | 97.67 | 85.29 |                   |  |  |  |  |  |
| USE_T+DAN (w2v w.e.)                        | 81.32 | 86.66 | 93.90 | 88.14 | 95.51 | 86.62 | -                 |  |  |  |  |  |
| USE_T+CNN (w2v w.e.)                        | 81.18 | 87.45 | 93.58 | 87.32 | 98.07 | 86.69 | -                 |  |  |  |  |  |
| Sentence Embedding Transfer Learning        |       |       |       |       |       |       |                   |  |  |  |  |  |
| USE_D                                       | 74.45 | 80.97 | 92.65 | 85.38 | 91.19 | 77.62 | 0.763 / 0.719 (r) |  |  |  |  |  |
| USE_T                                       | 81.44 | 87.43 | 93.87 | 86.98 | 92.51 | 85.38 | 0.814 / 0.782 (r) |  |  |  |  |  |
| USE_D+DAN (lrn w.e.)                        | 77.57 | 81.93 | 92.91 | 85.97 | 95.86 | 83.41 | -                 |  |  |  |  |  |
| USE_D+CNN (lrn w.e.)                        | 78.49 | 81.49 | 92.99 | 85.53 | 97.71 | 85.27 | -                 |  |  |  |  |  |
| USE_T+DAN (lrn w.e.)                        | 81.36 | 86.08 | 93.66 | 87.14 | 96.60 | 86.24 | -                 |  |  |  |  |  |
| USE_T+CNN (lrn w.e.)                        | 81.59 | 86.45 | 93.36 | 86.85 | 97.44 | 87.21 | -                 |  |  |  |  |  |
| Word Embedding Transfer Learning            |       |       |       |       |       |       |                   |  |  |  |  |  |
| DAN (w2v w.e.)                              | 74.75 | 75.24 | 90.80 | 81.25 | 85.69 | 80.24 | -                 |  |  |  |  |  |
| CNN (w2v w.e.)                              | 75.10 | 80.18 | 90.84 | 81.38 | 97.32 | 83.74 | -                 |  |  |  |  |  |
| Baselines with No Transfer Learning         |       |       |       |       |       |       |                   |  |  |  |  |  |
| DAN (lrn w.e.)                              | 75.97 | 76.91 | 89.49 | 80.93 | 93.88 | 81.52 | -                 |  |  |  |  |  |
| CNN (lrn w.e.)                              | 76.39 | 79.39 | 91.18 | 82.20 | 95.82 | 84.90 | -                 |  |  |  |  |  |

(ロ)、(型)、(E)、(E)、 E) の(()

# Task performance on SST for varying amounts of training data

| Model                                       | SST 1k | SST 2k | SST 4k | SST 8k | SST 16k | SST 32k | SST 67.3k |  |  |  |  |  |  |
|---------------------------------------------|--------|--------|--------|--------|---------|---------|-----------|--|--|--|--|--|--|
| Sentence & Word Embedding Transfer Learning |        |        |        |        |         |         |           |  |  |  |  |  |  |
| USE_D+DNN (w2v w.e.)                        | 78.65  | 78.68  | 79.07  | 81.69  | 81.14   | 81.47   | 82.14     |  |  |  |  |  |  |
| USE_D+CNN (w2v w.e.)                        | 77.79  | 79.19  | 79.75  | 82.32  | 82.70   | 83.56   | 85.29     |  |  |  |  |  |  |
| USE_T+DNN (w2v w.e.)                        | 85.24  | 84.75  | 85.05  | 86.48  | 86.44   | 86.38   | 86.62     |  |  |  |  |  |  |
| USE_T+CNN (w2v w.e.)                        | 84.44  | 84.16  | 84.77  | 85.70  | 85.22   | 86.38   | 86.69     |  |  |  |  |  |  |
| Sentence Embedding Transfer Learning        |        |        |        |        |         |         |           |  |  |  |  |  |  |
| USE_D                                       | 77.47  | 76.38  | 77.39  | 79.02  | 78.38   | 77.79   | 77.62     |  |  |  |  |  |  |
| USE_T                                       | 84.85  | 84.25  | 85.18  | 85.63  | 85.83   | 85.59   | 85.38     |  |  |  |  |  |  |
| USE_D+DNN (lrn w.e.)                        | 75.90  | 78.68  | 79.01  | 82.31  | 82.31   | 82.14   | 83.41     |  |  |  |  |  |  |
| USE_D+CNN (lrn w.e.)                        | 77.28  | 77.74  | 79.84  | 81.83  | 82.64   | 84.24   | 85.27     |  |  |  |  |  |  |
| USE_T+DNN (lrn w.e.)                        | 84.51  | 84.87  | 84.55  | 85.96  | 85.62   | 85.86   | 86.24     |  |  |  |  |  |  |
| USE_T+CNN (lrn w.e.)                        | 82.66  | 83.73  | 84.23  | 85.74  | 86.06   | 86.97   | 87.21     |  |  |  |  |  |  |
| Word Embedding Transfer Learning            |        |        |        |        |         |         |           |  |  |  |  |  |  |
| DNN (w2v w.e.)                              | 66.34  | 69.67  | 73.03  | 77.42  | 78.29   | 79.81   | 80.24     |  |  |  |  |  |  |
| CNN (w2v w.e.)                              | 68.10  | 71.80  | 74.91  | 78.86  | 80.83   | 81.98   | 83.74     |  |  |  |  |  |  |
| Baselines with No Transfer Learning         |        |        |        |        |         |         |           |  |  |  |  |  |  |
| DNN (lrn w.e.)                              | 66.87  | 71.23  | 73.70  | 77.85  | 78.07   | 80.15   | 81.52     |  |  |  |  |  |  |
| CNN (lrn w.e.)                              | 67.98  | 71.81  | 74.90  | 79.14  | 81.04   | 82.72   | 84.90     |  |  |  |  |  |  |

# Resource Usage

#### Compute Usage



E 990

# Resource Usage

Compute Usage



▲ 王 ▶ 王 • • • • • •

# **Resource Usage**

#### Memory Usage



∃ 990

# Conclusion

- 1) sentence level embeddings are better than only word level embeddings
- 2) sentence level + word level embeddings are even better than 1)
- 3) transfer learning is most helpful when limited training data is available
- 4) the encoding models make different trade-offs (accuracy, model complexity) that should be considered when choosing a model for a particular application

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ