MobileNets:

Efficient Convolutional Neural Networks for Mobile Vision Applications

MobileNets

Key Requirements for Commercial Computer Vision Usage

- Data-centers(Clouds)
 - Rarely safety-critical
 - Low power is nice to have
 - Real-time is preferable
- Gadgets Smartphones, Self-driving cars, Drones, etc.
 - Usually safety-critical(except smartphones)
 - Low power is must-have
 - Real-time is required

What's the "Right" Neural Network for Use in a Gadget?

- Desirable Properties
 - Sufficiently high accuracy
 - Low computational complexity
 - Low energy usage
 - Small model size

Why Small Deep Neural Networks?

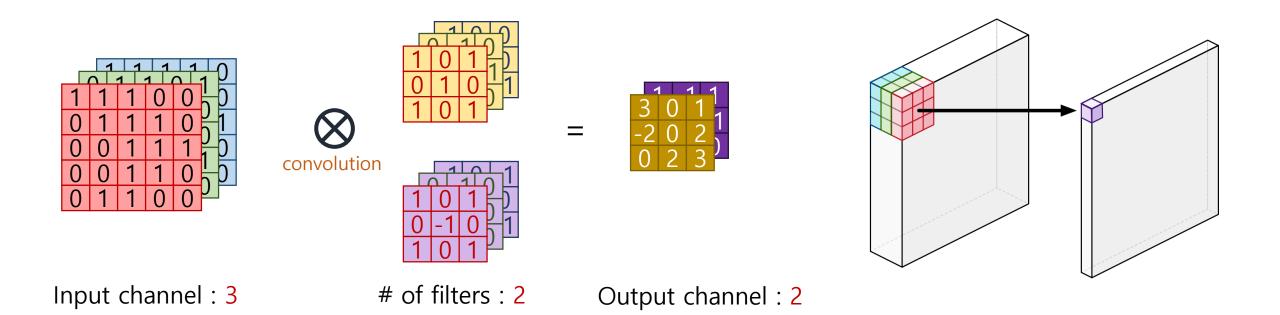
- Small DNNs train faster on distributed hardware
- Small DNNs are more deployable on embedded processors
- Small DNNs are easily updatable Over-The-Air(OTA)

Techniques for Small Deep Neural Networks

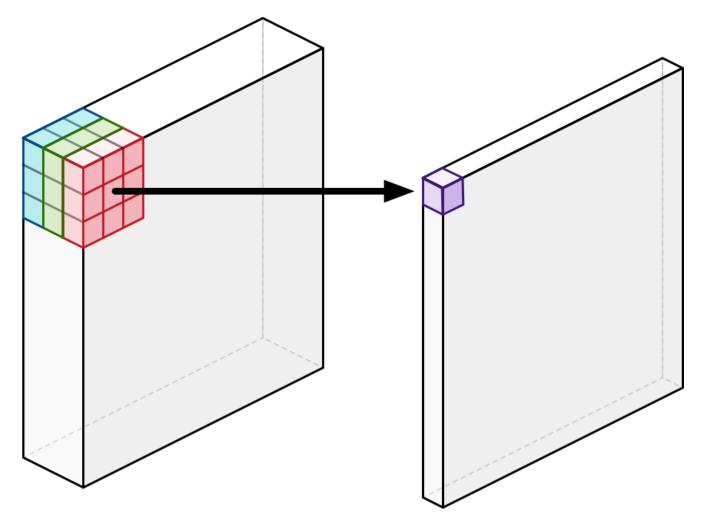
- Remove Fully-Connected Layers
- Kernel Reduction ($3x_3 \rightarrow 1x_1$)
- Channel Reduction
- Evenly Spaced Downsampling
- Depthwise Separable Convolutions
- Shuffle Operations
- Distillation & Compression

Key Idea : Depthwise Separable Convolution!

Recap – Convolution Operation



Standard Convolution

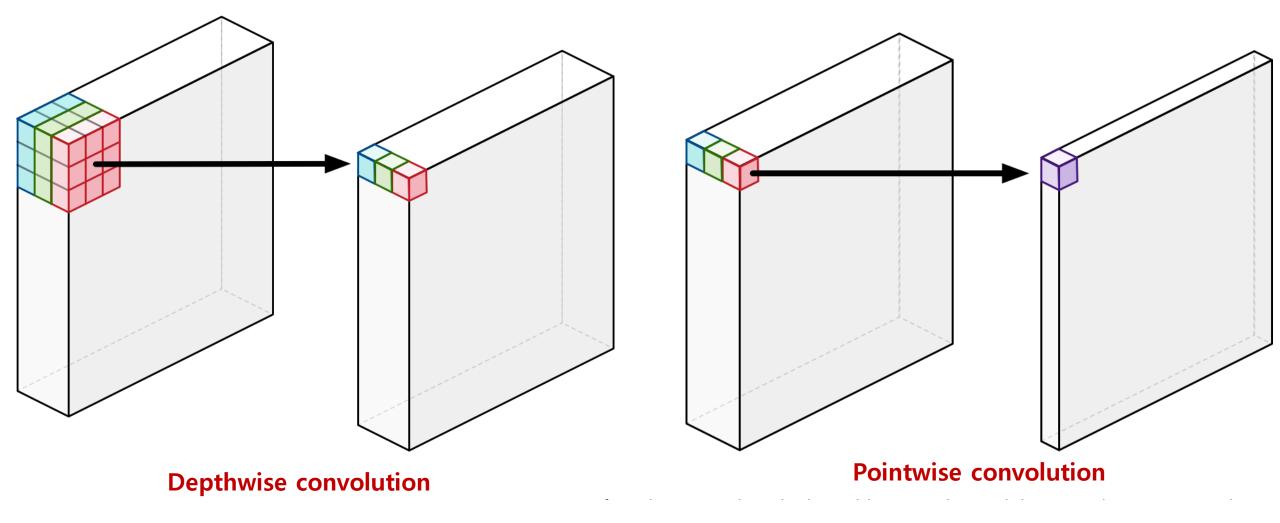


Depthwise convolution

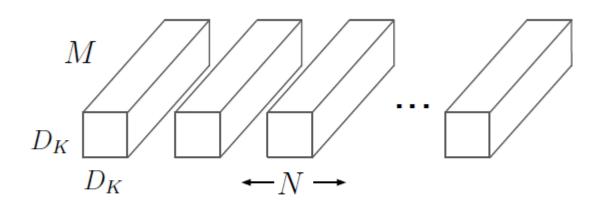
Figures from http://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/

Depthwise Separable Convolution

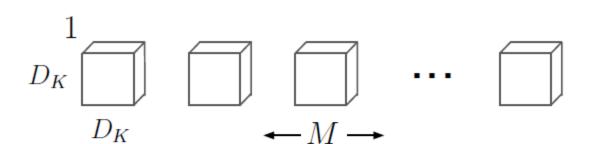
• Depthwise Convolution + Pointwise Convolution(1x1 convolution)



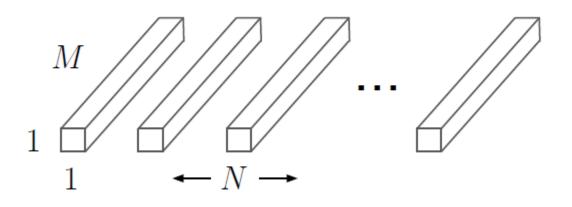
Standard Convolution vs Depthwise Separable Convolution



(a) Standard Convolution Filters



(b) Depthwise Convolutional Filters



(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Standard Convolution vs Depthwise Separable Convolution

- Standard convolutions have the computational cost of
 - $D_K \times D_K \times M \times N \times D_F \times D_F$
- Depthwise separable convolutions cost
 - $D_K \times D_K \times M \times D_F \times D_F + M \times N \times D_F \times D_F$
- Reduction in computations
 - $1/N + 1/D_{K}^{2}$
 - If we use 3x3 depthwise separable convolutions, we get between 8 to 9 times less computations
 - D_K: width/height of filters
 - D_F: width/height of feature maps
 - **M** : number of input channels
 - N : number of output channels(number of filters)

Comparison Standard Vs. Depthwise

No.Mults in Depthwise Separable Conv	_		$M \times D_G^2 (D_K^2 + N)$
No.Mults in Standard Conv	_	Ν	$\times D_G \times D_G \times D_K \times D_K \times M$

 $\frac{No. Mults in Depthwise Separable Conv}{No. Mults in Standard Conv} = \frac{D_K^2 + N}{(D_K^2 \times N)} = \frac{1}{N} + \frac{1}{D_K^2}$

Depthwise Separable Convolutions

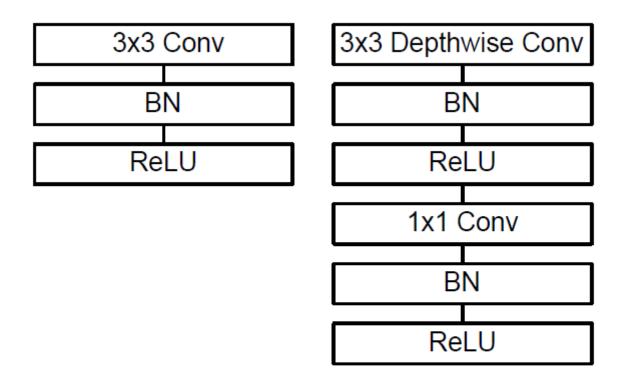


Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

Model Structure

Table 1. MobileNet Body Architecture

Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224\times224\times3$
Conv dw / s1	$3 \times 3 \times 32$ dw	$112\times112\times32$
Conv / s1	$1 \times 1 \times 32 \times 64$	$112\times112\times32$
Conv dw / s2	$3 \times 3 \times 64$ dw	$112\times112\times64$
Conv / s1	$1\times1\times64\times128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128$ dw	$56 \times 56 \times 128$
Conv / s1	$1\times1\times128\times128$	$56\times 56\times 128$
Conv dw / s2	$3 \times 3 \times 128$ dw	$56\times 56\times 128$
Conv / s1	$1\times1\times128\times256$	$28 \times 28 \times 128$
Conv dw / s1	3 imes 3 imes 256 dw	$28\times28\times256$
Conv / s1	$1\times1\times256\times256$	$28\times28\times256$
Conv dw / s2	3 imes 3 imes 256 dw	$28\times28\times256$
Conv / s1	$1\times1\times256\times512$	$14\times14\times256$
$5 \times $ Conv dw / s1	3 imes 3 imes 512 dw	$14\times14\times512$
Conv / s1	$1\times1\times512\times512$	$14\times14\times512$
Conv dw / s2	$3 \times 3 \times 512$ dw	$14\times14\times512$
Conv / s1	$1\times1\times512\times1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv / s1	$1\times1\times1024\times1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$
FC / s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

Table 2. Resource Per Layer Type

Туре	Mult-Adds	Parameters
Conv 1×1	94.86%	74.59%
Conv DW 3×3	3.06%	1.06%
Conv 3×3	1.19%	0.02%
Fully Connected	0.18%	24.33%

Width Multiplier & Resolution Multiplier

- Width Multiplier Thinner Models
 - For a given layer and width multiplier α, the number of input channels M becomes αM and the number of output channels N becomes αN – where α with typical settings of 1, 0.75, 0.6 and 0.25
- Resolution Multiplier Reduced Representation
 - The second hyper-parameter to reduce the computational cost of a neural network is a resolution multiplier ρ
 - o<ρ≤1, which is typically set of implicitly so that input resolution of network is 224, 192, 160 or 128(ρ = 1, 0.857, 0.714, 0.571)
- Computational cost:

 $D_{K} \times D_{K} \times \alpha M \times \rho D_{F} \times \rho D_{F} + \alpha M \times \alpha N \times \rho D_{F} \times \rho D_{F}$

Width Multiplier & Resolution Multiplier

Table 3. Resource usage for modifications to standard convolution. Note that each row is a cumulative effect adding on top of the previous row. This example is for an internal MobileNet layer with $D_K = 3$, M = 512, N = 512, $D_F = 14$.

Layer/Modification	Million	Million
	Mult-Adds	Parameters
Convolution	462	2.36
Depthwise Separable Conv	52.3	0.27
$\alpha = 0.75$	29.6	0.15
$\rho = 0.714$	15.1	0.15

Experiments – Model Choices

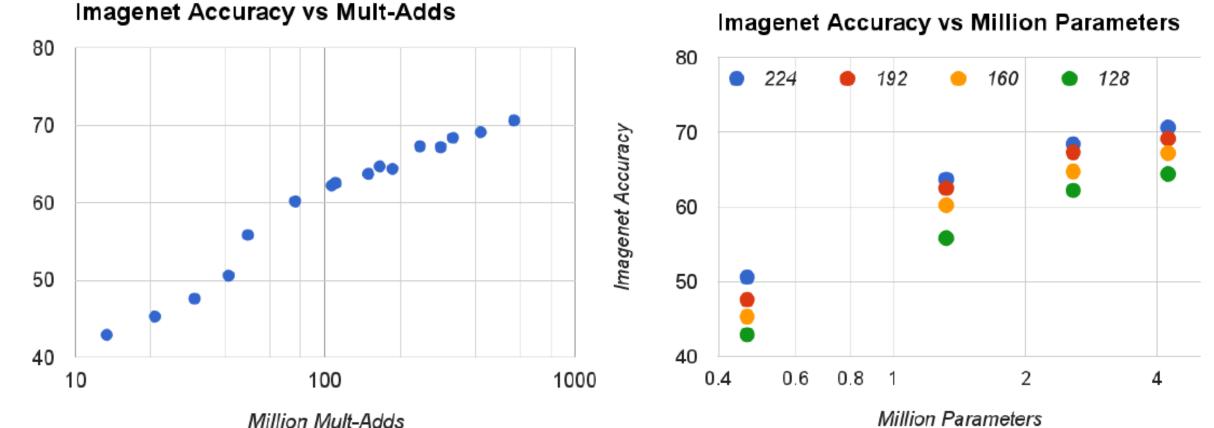
				Mobile Net W	ium mumphe	1	
				Width Multiplier	ImageNet	Million	Million
Table 4. Depthwise S	eparable vs F	ull Convolution	MobileNet		Accuracy	Mult-Adds	Parameters
Model	ImageNet	Million	Million	1.0 MobileNet-224	70.6%	569	4.2
	Accuracy	Mult-Adds	Parameters	0.75 MobileNet-224	68.4%	325	2.6
	2			0.5 MobileNet-224	63.7%	149	1.3
Conv MobileNet	71.7%	4866	29.3	0.25 MobileNet-224	50.6%	41	0.5
MobileNet	70.6%	569	4.2	0.25 Wi00fietNet-224	50.070	41	0.5

Table 7. MobileNet Resolution

Table 6. MobileNet Width Multiplier

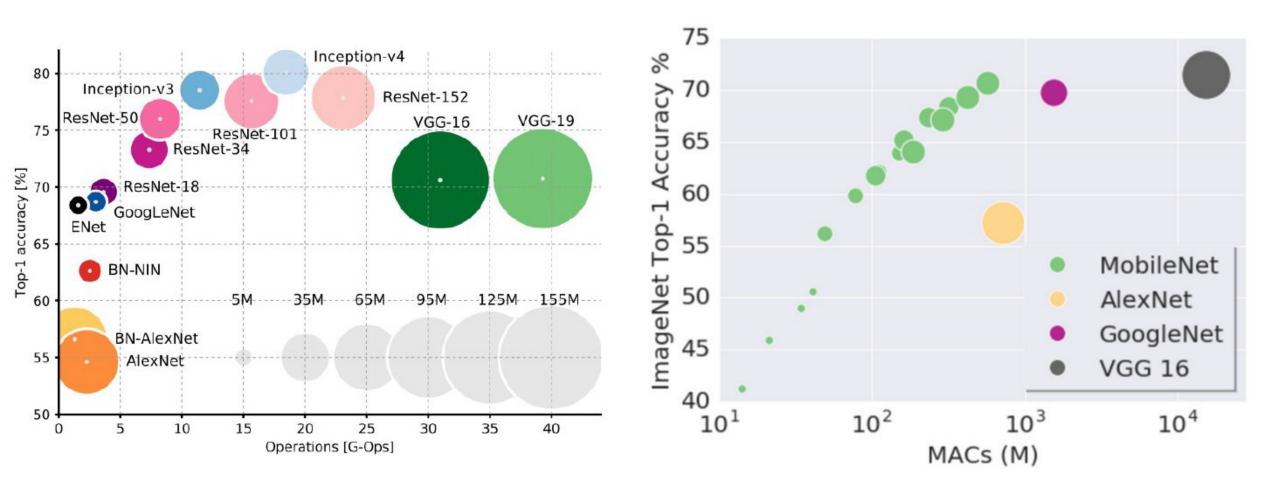
		allow MobileN		Resolution	ImageNet	Million	Million
Model	ImageNet	Million	Million		Accuracy	Mult-Adds	Parameters
	Accuracy	Mult-Adds	Parameters	1.0 MobileNet-224	70.6%	569	4.2
0.75 MobileNet	68.4%	325	2.6	1.0 MobileNet-192	69.1%	418	4.2
Shallow MobileNet	65.3%	307	2.9	1.0 MobileNet-160	67.2%	290	4.2
				1.0 MobileNet-128	64.4%	186	4.2

Model Shrinking Hyperparameters



Imagenet Accuracy

Model Shrinking Hyperparameters



Results

	i i o o o i i p i i i	oon to r op min	1110 0010
Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

Table 8. MobileNet Comparison to Popular Models

Table 9. Smaller MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
0.50 MobileNet-160	60.2%	76	1.32
Squeezenet	57.5%	1700	1.25
AlexNet	57.2%	720	60

Results

Table 10. MobileNet for Stanford Dogs				
Model	Top-1	Million	Million	
	Accuracy	Mult-Adds	Parameters	
Inception V3 [18]	84%	5000	23.2	
1.0 MobileNet-224	83.3%	569	3.3	
0.75 MobileNet-224	81.9%	325	1.9	
1.0 MobileNet-192	81.9%	418	3.3	
0.75 MobileNet-192	80.5%	239	1.9	

Table 11. Performance of PlaNet using the MobileNet architecture. Percentages are the fraction of the Im2GPS test dataset that were localized within a certain distance from the ground truth. The numbers for the original PlaNet model are based on an updated version that has an improved architecture and training dataset.

Scale	Im2GPS [7]	PlaNet [35]	PlaNet
			MobileNet
Continent (2500 km)	51.9%	77.6%	79.3%
Country (750 km)	35.4%	64.0%	60.3%
Region (200 km)	32.1%	51.1%	45.2%
City (25 km)	21.9%	31.7%	31.7%
Street (1 km)	2.5%	11.0%	11.4%

PlaNet : 52M parameters, 5.74B mult-adds MobilNet : 13M parameters, 0.58M mult-adds

Results

Table 13. COCO object detection results comparison using different frameworks and network architectures. mAP is reported with COCO primary challenge metric (AP at IoU=0.50:0.05:0.95)

Framework	Model	mAP	Billion	Million
Resolution			Mult-Adds	Parameters
	deeplab-VGG	21.1%	34.9	33.1
SSD 300	Inception V2	22.0%	3.8	13.7
	MobileNet	19.3%	1.2	6.8
Faster-RCNN	VGG	22.9%	64.3	138.5
300	Inception V2	15.4%	118.2	13.3
	MobileNet	16.4%	25.2	6.1
Faster-RCNN	VGG	25.7%	149.6	138.5
600	Inception V2	21.9%	129.6	13.3
	Mobilenet	19.8%	30.5	6.1

Figure 6. Example objection detection results using MobileNet SSD.

Tensorflow Implementation

	-	with tf.variable_scope(scope) as sc:				
<pre>def _depthwise_separable_conv(inputs,</pre>		end_points_collection = sc.name + '_end_points'				
		<pre>with slim.arg_scope([slim.convolution2d, slim.separable_convolution2d],</pre>				
num_pwc_filters,		activation_fn=None,				
	width_multiplier,	<pre>outputs_collections=[end_points_collection]):</pre>				
	sc,	<pre>with slim.arg_scope([slim.batch_norm],</pre>				
	downsample=False):	<pre>is_training=is_training,</pre>				
""" Helper function	to build the depth-wise separable convolution layer.	<pre>activation_fn=tf.nn.relu):</pre>				
	to build the depth-wise separable convolution layer.	<pre>net = slim.convolution2d(inputs, round(32 * width_multiplier), [3, 3], stride=2, padding='SAME', scope='conv_1')</pre>				
		<pre>net = slim.batch_norm(net, scope='conv_1/batch_norm')</pre>				
num_pwc_filters = ro	ound(num_pwc_filters * width_multiplier)	<pre>net = _depthwise_separable_conv(net, 64, width_multiplier, sc='conv_ds_2')</pre>				
_stride = 2 if downsample else 1		<pre>net = _depthwise_separable_conv(net, 128, width_multiplier, downsample=True, sc='conv_ds_3')</pre>				
		<pre>net = _depthwise_separable_conv(net, 128, width_multiplier, sc='conv_ds_4')</pre>				
		<pre>net = _depthwise_separable_conv(net, 256, width_multiplier, downsample=True, sc='conv_ds_5')</pre>				
<pre># skip pointwise by setting num_outputs=None</pre>		<pre>net = _depthwise_separable_conv(net, 256, width_multiplier, sc='conv_ds_6')</pre>				
<pre>depthwise_conv = slim.separable_convolution2d(inputs,</pre>		<pre>net = _depthwise_separable_conv(net, 512, width_multiplier, downsample=True, sc='conv_ds_7')</pre>				
	num_outputs=None,					
	<pre>stride=_stride,</pre>	<pre>net = _depthwise_separable_conv(net, 512, width_multiplier, sc='conv_ds_8')</pre>				
		<pre>net = _depthwise_separable_conv(net, 512, width_multiplier, sc='conv_ds_9')</pre>				
	depth_multiplier=1,	<pre>net = _depthwise_separable_conv(net, 512, width_multiplier, sc='conv_ds_10')</pre>				
	<pre>kernel_size=[3, 3],</pre>	<pre>net = _depthwise_separable_conv(net, 512, width_multiplier, sc='conv_ds_11')</pre>				
	<pre>scope=sc+'/depthwise_conv')</pre>	<pre>net = _depthwise_separable_conv(net, 512, width_multiplier, sc='conv_ds_12')</pre>				
		<pre>net = _depthwise_separable_conv(net, 1024, width_multiplier, downsample=True, sc='conv_ds_13')</pre>				
bn = slim.batch_norm	<pre>i(depthwise_conv, scope=sc+'/dw_batch_norm')</pre>	<pre>net = _depthwise_separable_conv(net, 1024, width_multiplier, sc='conv_ds_14')</pre>				
<pre>pointwise_conv = slim.convolution2d(bn,</pre>		<pre>net = slim.avg_pool2d(net, [7, 7], scope='avg_pool_15')</pre>				
	<pre>num_pwc_filters,</pre>					
<pre>kernel_size=[1, 1],</pre>		<pre>end_points = slim.utils.convert_collection_to_dict(end_points_collection)</pre>				
		<pre>net = tf.squeeze(net, [1, 2], name='SpatialSqueeze') and mainter[language]</pre>				
	<pre>scope=sc+'/pointwise_conv')</pre>	end_points['squeeze'] = net				
bn = slim.batch_norm	1(pointwise_conv, <pre>sc+'/pw_batch_norm')</pre>	<pre>logits = slim.fully_connected(net, num_classes, activation_fn=None, scope='fc_16')</pre>				
return bn		<pre>predictions = slim.softmax(logits, scope='Predictions')</pre>				

https://github.com/Zehaos/MobileNet/blob/master/nets/mobilenet.py

```
end_points['Logits'] = logits
end_points['Predictions'] = predictions
```

