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UMAP is a dimensional reduction technique,
such techniques seek to produce a low dimensional representation 
of high dimensional data while preserving relevant structure.

Dimension reduction is a fundamental technique for both visualization and pre-
processing for machine learning. There exist two categories of algorithm for 
dimension reduction:

• Those seeking to preserve distance structure within the data
(e.g.: PCA, MDS)

• Those seeking to preserve local distances over the global one
(e.g.: t-SNE, LargeVis)
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UMAP is part of the second category (i.e. preserving 
local distances) and is competitive with t-SNE.

UMAP is based on strong mathematical foundations notably topology wise 
and thus it can be scaled to significantly larger real data set sizes than are 
feasible for t-SNE. 

Moreover, UMAP arguably preserves more global structure than t-SNE and 
has a superior run time performance especially for higher dimension data 
sets.



5

Theoretical Foundations
I
II
III
IV
V
VI
VII

Introduction
Theoretical Foundations
Computational View
Implementation
Practical Efficacy
Weaknesses
Conclusion

The foundations of UMAP are largely based on manifold 
theory and topological data analysis. Here only a shallow 
overview will be given – for more details please refer to the 
paper section 2 and subsequent references from it.

To get a topological representation of high dimensional data, local fuzzy simplicial 
sets are patched together – in case of low dimensional data an equivalent 
representation is obtained.

Building the fuzzy topological representation is broken into two steps:
• Approximate a manifold on which the data is assumed to lie
• Construct a fuzzy simplicial set representation of approximated manifold
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In order to approximate the manifold, custom distances 
are defined for each element x of the data set X yielding 
a family of discrete metric spaces that need to be 
merged into a consistent global structure.

To do so the metric spaces are converted into fuzzy simplicial sets – 
simplicial sets will not be detailed here.

The classical notion of a fuzzy set is defined by a carrier set and a map 
called membership function such that the membership strength of an 
element is no longer a bivalent true or false property.

The underlying idea is to use such sets where all elements have 
membership strength of at least some value a comprised between 0 
(excluded) and 1.
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Finally optimization of low dimensional representation has to 
be done but to make local connectedness requirement the 
distance to the nearest neighbor (NN) is used via a parameter 
defining the expected distance between NN.

Let Y be the low dimensional representation of the data X.
Some fuzzy set cross entropy C is used to compare two fuzzy sets.
To optimize the embedding of Y with respect to the cross entropy C stochastic 
gradient descent is used (in a similar way as t-SNE) but to do so some more 
approximation of necessary objects may be required.

This optimization minimize the error between the two topological representations



8

Computational View
I
II
III
IV
V
VI
VII

Introduction
Theoretical Foundations
Computational View
Implementation
Practical Efficacy
Weaknesses
Conclusion

From a computational point of view UMAP is a k-neighbors 
graph based algorithm – as is t-SNE – and can be described in 
two phases:

1. Construction of a particular weighted k-neighbors graph.
Considering a specific k a graph, with vertices the data set X, is computed and
weighted regarding the distance to the k-nearest neighbors (kNN) for each 
element x.

2. Computation of low dimensional layout of this graph.
A force directed graph layout algorithm is used with a set of attractive forces on
the edges and a set of repulsive ones applied among the vertices.
The algorithm apply those forces in an iterative way and eventually reach
convergence.
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Overview of the UMAP algorithm – for more details please 
refer to the paper section 4.1.
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For a practical implementation of this algorithm an 
approximate kNN calculation is required – the authors 
recommend the Nearest-Neighbor-Descent algorithm c.f. [16] 
in paper.

An efficient optimization via stochastic gradient descent is also 
required – c.f. [45] & [33] in paper.

As seen in Algorithm 1, UMAP uses 4 hyper-parameters:

• n, the number of neighbors to consider for approximating the local metric
• d, the target embedding dimension
• min-dist, the desired separation between close points in the embedding space
• n-epochs, the number of training epochs to used when optimizing the low 

dimensional representation
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n can be interpreted as the local scale to approximate the 
manifold as roughly flat, it also represents some degree of trade-
off between fine grained and large scale manifold features.

min-dist determines how closely points can be packed together 
in low dimensional representation, it is an aesthetic parameter to 
increase if UMAP is used for visualization.

Figure 1(1) (cropped): Variation 
of UMAP hyper-parameters n 
and min-dist result in different 
embeddings. The data is 
uniform random samples from 
a 3-dimensional color-cube […]

(1): the number of the figure correspond to
      the number assigned in the paper as for
      the next figures in this presentation. 
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Qualitative comparison on multiple 
data sets shows comparable quality of 
embedding to t-SNE for UMAP while 
reducing to 2 or 3 dimensions. UMAP 
is also arguably capturing more of the 
global and topological structure of the 
data sets than t-SNE.

Figure 2 (cropped): comparison of 
several dimension reductions 
algorithms [on multiple data sets]. [...]
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Since UMAP uses stochastic processes, embeddings are 
different from run to run, therefore measuring how stable 
embeddings are is relevant.

To do so a Procrustes distance 
is used and the lower the 
distance between the two sets X 
and Y the more stable is the 
algorithm.

Figure 4: comparison of 
average Procrustes distance 
per point […] over a variety of 
sizes of sub-samples from the 
full Flow Cytometry data set.
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Computational performance comparison have been done for 
different algorithms on multiple data sets – for details on the 
data sets refer to the paper section 5.

The Table 1 shows that UMAP is 
superior to any of those other 
algorithms except for Pen Digits.

Table 1: Run-time of several 
dimension reduction algorithms 
on various data sets. […] Fastest 
run-time for each data set has 
been bolded.
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UMAP shows better performance than t-SNE and LargeVis 
algorithms even when scaling with embedding dimension 
(Figure 5.b), ambient dimension (c.f. Figure 6 in paper), and 
number of samples (Figure 7).

Figure 5.b: detail of scaling 
for embedding dimension of 
six or less. [...]

Figure 7: run-time 
performance 
scaling of t-SNE 
and UMAP on 
various sized sub-
samples of the full 
Google News data 
set. [...]
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Despite being a very effective algorithm for visualization and 
dimension reduction UMAP make trade-off as well.

• UMAP lacks strong interpretability, its dimension embedding space has no meaning 
contrary to the PCA algorithm whose dimensions are the direction of greatest co-
variance.

• It assumes manifold structures exist in the data, care must be taken for small sample 
sizes of noisy data and data with only large scale manifolds.

• It assumes that local distance is more important than long range one and therefore do 
not necessarily represent accurately global structure.

• Many approximations are made for computational efficiency, those approximations may 
have an impact on the result especially for small (< 500) data set sizes.
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UMAP is a general purpose dimension reduction technique and the 
algorithm implementing it is faster than t-SNE and has better scaling.

It allows high quality embeddings of larger data sets than previously 
attainable, moreover its effectiveness in various scientific fields shows 
the strength of this algorithm.
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