

Analysis of CNN working with logical decision functions in the task of computer tomography images recognition

R.M. Kozinets, V.B. Berikov

November 14, 2019

NSU-2019

Problem formulation

Task and Data

Current state of the work

Analysis CNN in lung cancer recognition(previous semester)

Problem formulation

Problem

General statement

Assume X set of objects x. Y is set of labels, $X^d \in X$ - random sample of size d. $y^* : X \to Y$ goal function known on X^d . Need to build decision function $f(X) \to Y$ minimizing the probability of error.

More accurate formulation

- X is set of objects and Y is set of labels, X corresponds with Y, the task is: Using elements in CNN functional set of tool build feature representation of object? which most optimal in classification task by logical functions.
- Based builded feature representation of object, develop logical predictive model with high interpretive decision making process and high quality predictive ability.

Task and Data

- The task: two types stroke recognition by Computer tomography images.
- Data: CT images in DICOM format of human brain with/(without) pathologies.
- Labels: Ichemic stroke, hemorrhagic stroke, none.
- Expected result: recognition model with CNN module for feature extracting with interpretative decision making process using logical recognition functions and vision based explanation.

CNN

- Feature extractor: CNN block
- Classifer: MLP block with softmax
- CNN learned weights in optimal way for MLP classifier after: f(x) = argmin(L(MLP(f(x))))
- MLP with hidden layers transform input feature space to be linearly separable

MLP data transformation

Example of decision making $(x_k \rightarrow y)$: $(f_1(x_k) < M_i)$ and $(f_2(x_k)) < (M_j) \rightarrow y_k$, where f_i - features of x_k , y_k - predicted label Take feature vector from last conv. layer of pretrained network and build decision tree on given data

- it give as weakly Analysis of feature importance in decision making process
- problem: this features can be not optimal for decision tree type of model.

Solution - train CNN with decision tree as classifier, if CNN and DT will be train simultaneously, learned features are optimal for DT, and decision tree is optimal for learned features.

- optimal learned features for logical recognition function
- strong CNN features analysis
- main problem decision tree learning process is not differentiable

Current state of the work

Task and Data

- RSNA Intracranial Hemorrhage Detection (multi label classification)
- Five Hemorrhage subtypes (epidural, intraparenchymall, intraventricular, subarachnoid, subdural)
- 674258 raw Dicom images for train with class imbalance

- EfficientNet B2 with one hidden layer MLP, binary cross entropy loss
- Trainig: 3 epoch
- Result
 - Test loss 0.23
 - Test AUC = 0.95
 - Test Acc = 0.97

GradCAM

subarachnoid

intraparenchymal

subdural

intraventricular

Tree Regularization CNN training

Analysis CNN in lung cancer recognition(previous semester)

Data preposition

- Crop tumours from images with 50x50 resolution
- There are a total of 551065 annotations.
 - 1351 positive(cancer)
 - 549714(non-cancer)
- So there big class imbalance for training
- Augment positive class by rotating images by 90,180 and 270 degrees.

a) b) c) d) Figure 2. Augmentation: a) - original,b) - 90 degree rotation c) - 180 degree rotation, d) -270 degree rotation

- Train (7722):
 - cancer 3380
 - non-cancer 4342
- Test (2251):
 - cancer 1073
 - non-cancer 1178

Input layer shape = (batch_size, 50, 50, 1)						
Conv2D 20 (5x5) + relu						
Maxpooling (2,2)						
Conv2D 40 (3x3) + relu						
MaxPooling (2,2)						
Conv2D 80 (3,3) + relu						
Maxpooling (2,2)						
Flatten						
Dence(180) + relu						
Dence(2) + softmax						
sample	accuracy	loss				
Train	0.982906	0.050968				
Test	0.9253665	0.210678				

Actuation's visualization: benign tumor

Actuation's visualizing:malignant tumor

Filter Visualization

Assume *I* - origin image, F_I^c - filter *c* of layer *I*. We want to get image *I'* witch get maximal activation of filter F_I^c . In this way we train our images by this process:

$$I' = I' + \frac{dL(F_l^c, I')}{dI'} rate,$$

where $L(F_l^c, I') = \frac{1}{n*m} \sum_{i,j}^{m,n} A_{i,j}^{l,c}$ We change our image I in gradient of loss of F_l^c

Figure 1: conv layer 1

Figure 2: conv layer2

Figure 3: conv layer3

Covariation "Style" matrix

I – input image, $A_{i,j}^{c,l}(I)$ activation in position (i, j) of filter c of layer I for image I. Covariation between two filter defined as:

$$cov(f_1, f_2) = \frac{\sum_{i,j}^{n} ((A_{i,j}^{f_1} - mean(A_{i,j}^{f_1}))((A_{i,j}^{f_2} - mean(A_{i,j}^{f_2})))}{n^2}$$

where n - size of feature map.

malignant tumour	benign tumour
(28, 40)	(34,56)
(57, 76)	(56,73)
(34, 56)	(34,35)
(56, 73)	(56,76)
(40, 68)	(53,76)

Covariation matrix:malignant tumor

Covariation matrix: benign tumor

Averaged covariation:malignant tumor

Averaged covariation:benign tumor

Layer distribution

Layer distribution

Method	Depth = 3	Depth = 4	Depth = 5	Depth = 6
DT + max activations	0.7209	0.7526	0.79056	0.81122
DT + average activations	0.75370	0.76472	0.76610	0.78091
DT + full layer	0.88219	0.867034	0.89700	0.887357
DT + maxpooling	0.85291	0.848432	0.88804	0.88012

- Visualization the most understandable form but cannot be explained mathematically
- For effective using a decision tree model we need to use spatial information of features activation with values of activation
- In feature work different methods of analysis and visualizations will be combined and used to build decision tree to explain decision making of CNN.

Thanks for attention