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Introduction
● Machine Learning Library to ease the development of ML algorithms, especially Deep Neural 

Networks

● Computation and Memory Efficient and runs on various heterogeneous systems

● Increasing Scale and Complexity of Machine Learning Algorithms

● Rise of Structural and Computational Complexity 



Machine Learning System Considerations

1. Programming Paradigms

● Declarative Programming or Imperative Programming

2. Code Execution Model

● Concrete Execution or Delayed Execution



Machine Learning System Considerations

Declarative or Imperative Programming

● Specifying the computation to be performed or specifying how the computation will be performed



Machine Learning System Considerations

Concrete Execution ot Delayed Execution

● Execution can be concrete,  where the result is returned right away on the same thread,  or 

delayed, where the statements are gathered and transformed into a data flow graph as an 

intermediate representation first, before released to available devices



System Design Approach for MXNet 
● The result of combining different paradigms and execution models resulted in MXNet(or “mix-net”)

● The intention is to blend advantages of different approaches. Declarative programming offers clear 

boundary on the global computation graph, discovering more optimization opportunity, whereas 

imperative programs offers more flexibility

● In the context of deep learning, declarative programming is useful in specifying the computation 

structure in neural network configurations, while imperative programming are more natural for 

parameter updates and interactive debugging

● Embedded in multiple host languages known as the Frontend Languages

● Execution fused into a single backend engine and provides a communication API through the 

backend



MXNet Programming Interface

1. Symbol: Declarative Symbolic Expression

● Declare a computation graph. Symbols are composited by operators, such as simple operations

● An operator can take several input variables, produce more than one output variables, and have 

internal state variables.  

● A variable can be either free, which we can bind with value later, or an output of another symbol.  



MXNet Programming Interface

1. Symbol: Declarative Symbolic Expression 

E.g C = A + B; D = C + 1

Figure 1: Symbolic Expression



MXNet Programming Interface

2. NDArray: Imperative Tensor Computation

● MXNet offers the NDArray library with imperative tensor computation 

● Defines the core data structure for all mathematical computations.



MXNet Programming Interface

3. KVStore: Data Synchronisation over Devices

● The KVStore is a distributed key-value store for data synchronization over multiple devices.  

● It supports two primitives: push a key-value pair from a device to the store,  and pull the value on a  

key  from  the  store



Other Modules provided by MXNet

● MXNet ships with tools to pack arbitrary sized examples into a single compact file to facilitate both 

sequential and random seek. 

● Data prefetching and pre-processing are multi-threaded, reducing overheads due to possible 

remote file store reads and/or image decoding and transformation



MXNet Implementation

1. Computation Graph

2. Dependency Engine

3. Data Communication



MXNet Implementation

1. Computation Graph

● Before computation evaluation,  MXNet computes the graph to optimize the efficiency and 

allocate memory to internal variables

● Graph Optimisation and Memory Allocation

● Ideal strategy for Memory Allocation has  O(n2) time complexity



MXNet Implementation

2. Dependency Engine

● Source units are registered to the engine with a unique tag

● Operations performed, such as a matrix operation or data communication, are then pushed into 

the engine with specifying the required resource tags  

● The engine continuously schedules the pushed operations for execution if dependencies are 

resolved   

● Multiple computation resources such as CPUs,  GPUs,  and the memory/PCI ebuses, the engine 

uses multiple threads to schedule the operations for better resource utilization and parallelization



MXNet Implementation

3. Data Communication

● The dependency engine is used to schedule the KVStore operations and manage the data 

consistency. The strategy not only makes the data synchronization works seamless with 

computation, and also greatly simplifies the implementation.  

● Adopting a two-level server structure:
○ Level-1 server manages the data synchronization between the devices within a single machine
○ Level-2 server manages inter-machine synchronization



Figure 2: MXNet Overview



Evaluation
1. Raw Performance

2. Memory Footprint

3. Scalability



Evaluation
1. Raw Performance

● Based on convnet-benchmarks. Systems are compiled with CUDA 7.5 and CUDNN 3 except for  

TensorFlow,  which  only  supports  CUDA  7.0  and  CUDNN  2.   Experiments run on a single Nvidia 

GTX 980 card

Figure 3: Comparison Graph



Evaluation
2. Memory Footprint

●  Both “inplace” and “co-share” can effective reduce the memory footprint. Combing them leads to a 

2x reduction for all networks during model training, and further improves to 4x for model 

prediction

Figure 4: MXNet Memory Footprint



Evaluation
3. Scalability

● Experiment trained googlenet with batch normalization on Amazon EC2 instance,  with four  

Nvidia  GK104  GPUs  and  10G  Ethernet.

Figure 5: Progress on Multiple Systems



Conclusion

MXNet is a machine learning library combining symbolic expression with tensor computation to 

maximize efficiency and flexibility

It is lightweight and embeds in multiple host languages, and can be run in a distributed setting



Figure 5: MXNet Eco System



Figure 6: MXNet Nvidia Benchmark



Figure 7: MXNet Distributed Training Results



Thank You :-)


