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Bidirectional Encoder Representations from Transformers
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Il. RELATED WORKS

The feature-based approach, such as ELMo (Peters et al.,2018a)
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Il. RELATED WORKS

The feature-based approach, such as ELMo (Peters et al.,2018a)

The fine-tuning approach, such as the Generative Pre-trained Transformer
(OpenAl GPT) (Radford et al., 2018)
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1. BERT

2 steps in the framework:

Pre-training
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Fine-tuning
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I11. BERT: MODEL ARCHITECTURE
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Figure |: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and
fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks

BDA&AI Master's Degree

NN

..... B
....... "P
BERT ....... amafs w P BERT
H- e || Esen [ & |- [ ] lew | & ] (& [ B[ | [&]
T i'_l“‘ it ¥ i i
Tok1 | [Tokw” [SEF] HTDH ] [Toh\l'l]

Question

*

Question Answer Pair

Paragraph

Fine-Tuning

12/12/2019 0



I11. BERT: MODEL ARCHITECTURE

TRANSFORMERS

Figure 2:The Transrormer — model
architecture

From ‘Attention Is All You Need’ by
Vaswani et al.
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I11. BERT: MODEL ARCHITECTURE
INPUT REPRESENTATION
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Figure 3: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position
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I11. BERT: MODEL ARCHITECTURE
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I11. BERT: MODEL ARCHITECTURE
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V. PRE-TRAINING DATA

BooksCorpus (800M words) (Zhu et al.,2015)
English Wikipedia (2,500M words)
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V. BERT: FINE-TUNING
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Figure |: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and
fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks
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V. RESULTS

System MNLI-(m/mm) QQP  QNLI SST-2 CoLA  STS-B MRPC  RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgase 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT | argr 86.7/85.9 72.1 92.7 94.9 60.5 86.5 39.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.®* BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.
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