BERT: PRE-TRAINING OF DEEP BIDIRECTIONAL TRANSFORMERS FOR LANGUAGE UNDERSTANDING

 Jacob Devlin
 Ming-Wei Chang
 Kenton Lee
 Kristina Toutanova

 Google Al Language

{jacobdevlin, mingweichang, kentonl, kristout}@google.com

Presented by Nikita Nikolaev

12/12/2019

I. INTRODUCTION

I. INTRODUCTION

BDA&AI Master's Degree

2/12/2019

I. INTRODUCTION

BERT

Bidirectional Encoder Representations from Transformers

BDA&AI Master's Degree

II. RELATED WORKS

II. RELATED WORKS

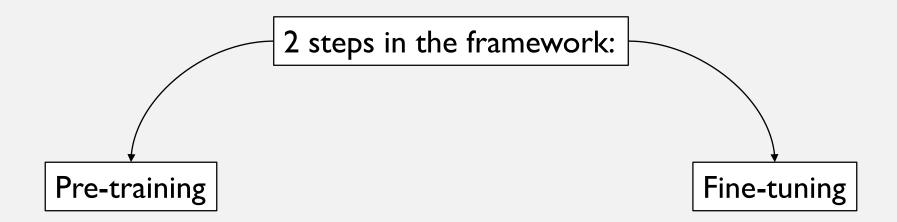
• The feature-based approach, such as ELMo (Peters et al., 2018a)

II. RELATED WORKS

- The feature-based approach, such as ELMo (Peters et al., 2018a)
- The fine-tuning approach, such as the Generative Pre-trained Transformer (OpenAI GPT) (Radford et al., 2018)

III. BERT

BDA&AI Master's Degree



III. BERT: MODEL ARCHITECTURE

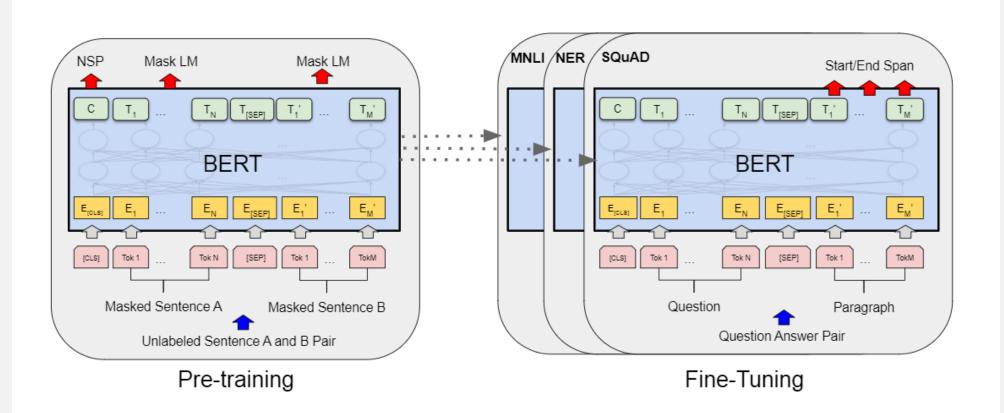
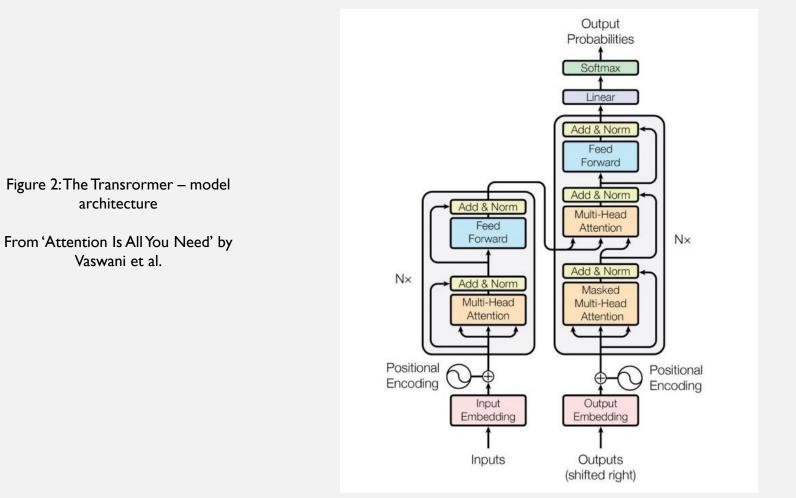


Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks.

III. BERT: MODEL ARCHITECTURE TRANSFORMERS



III. BERT: MODEL ARCHITECTURE INPUT REPRESENTATION

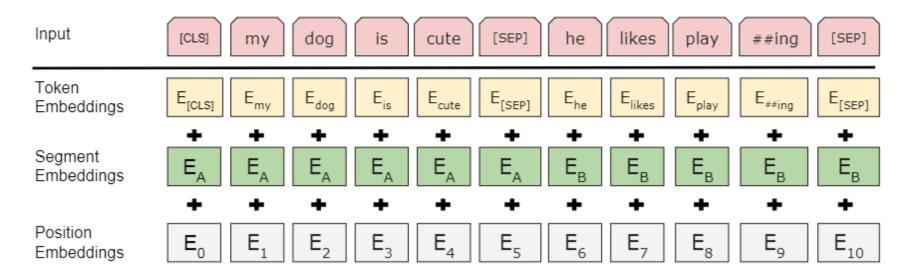


Figure 3: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

III. BERT: MODEL ARCHITECTURE

Mask LM NSP Mask LM T_N T_[SEP] T₁' Τ,, С . . BERT E_{ISEP} Е,, EICLET Ε,' [CLS] Tok N [SEP] Tok 1 TokM Tok 1 Masked Sentence A Masked Sentence B Unlabeled Sentence A and B Pair Pre-training

Figure 4: Overall pre-training procedure for BERT.

III. BERT: MODEL ARCHITECTURE MASKED LM

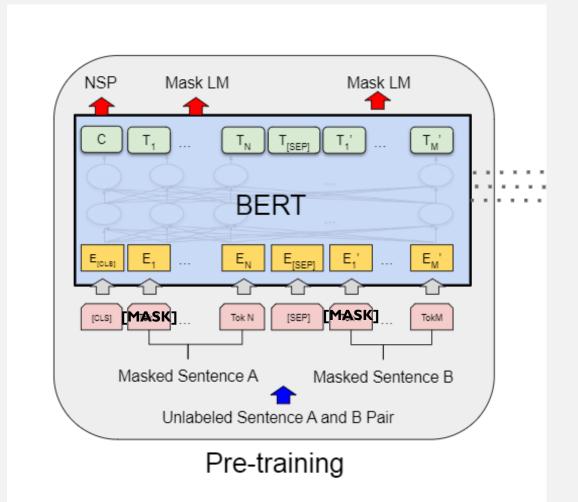


Figure 4: Overall pre-training procedure for BERT.

III. BERT: MODEL ARCHITECTURE NEXT SENTENCE PREDICTION

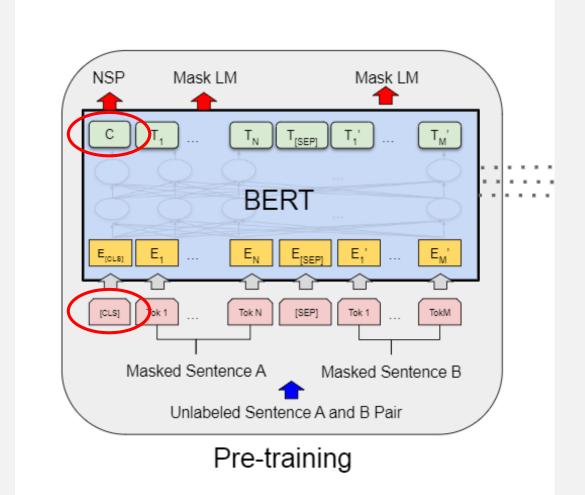


Figure 4: Overall pre-training procedure for BERT.

IV. PRE-TRAINING DATA

- BooksCorpus (800M words) (Zhu et al.,2015)
- English Wikipedia (2,500M words)

IV. BERT: FINE-TUNING

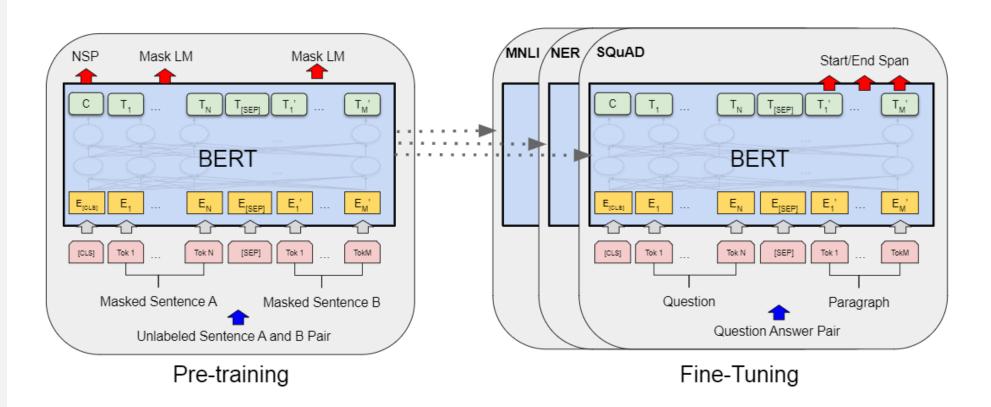


Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks.

V. RESULTS

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.⁸ BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

THANK YOU FOR YOUR ATTENTION

THANK YOU FOR YOUR ATTENTION IS ALL YOU NEED