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Hello!
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Machine Learning + Quantum Computing

= Amazing future.
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Introduction
Let’s do a little prep



Q + ML ● Both changing the way computation 
is being done.

● Both helping to solve previously 
untenable problems
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● Kernel methods for ML are ubiquitous for 
pattern recognition

● SVMs - well known for classification 
problems

MACHINE 
LEARNING

6



What happens if:

● Feature space becomes very large

● Kernel functions become expensive to 
estimate

LIMITATIONS - ML
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Quantum algorithms offers

● Exponential speed-ups by taking 
advantage of the exponentially large 
quantum space - Hilbert space

○ through controllable entanglement 
and interference

SOLUTION BY 
QUANTUM alg.

8



● Kernel - a set of mathematical functions that 
take data as input and transform it to required 
form.

● Entanglement - states of two or more objects 
described with reference to each other, 
eventhough the individual objects may be 
spatially separated

● Interference - interfere with other particles
○ Byproduct of superposition

🔑 keywords
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The authors:

● Propose and implement two novel methods on superconducting 
processor

● Both methods take advantage of large dimension of quantum hilbert 
space to obtain enhanced solution

● The data used were created artificially

🔨Proposed Method
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The authors:

● Present a quantum algorithm that has potential to run on near-term 
quantum devices

○ SHORT DEPTH CIRCUITS are the natural class of algorithms for such 
noisy devices

● The proposed algorithm takes on the original problem of supervised 
learning: construction of a classifier.

🔨Proposed Method
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● Method One: Use variational Circuit to generate a separating hyperplane 
in the quantum feature space - very much like linear binary classifier

● Method Two: Use quantum computer to estimate the kernel function of 
the quantum feature space directly

🔨Proposed Method
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Necessary Conditions:
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● To obtain quantum advantage in both methods, the 

Kernel must be very Hard



● Near - Term 

○ Noisy devices without full error correction

○ Decoherence, gate errors and measurement 
errors limit the usefulness

○ Algorithms will need to be designed with 
noisy hardware in mind

🔑 keywords
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CLASSICAL 
SVM

A little on SVMs
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Classical SVM 16

Consider classifying data set S with unknown 
labels

Have access to labeled Training set T 

Need to find 

Success rate:



Classical SVM 17



The 
proposed 
Methods
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Variational 
Circuit
This is directly related to linear binary 
classifiers (SVMs)
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VC METHOD 20



VC METHOD 21

whenever



VC METHOD 22

● Minimize likelihood of predicting a wrong label

● Sigmoid focuses on the really bad cases of the data



VC METHOD 23

● Minimize likelihood of predicting a wrong label

● Sigmoid focuses on the really bad cases of the data



VC METHOD 24

● Minimize likelihood of predicting a wrong label

● Sigmoid focuses on the really bad cases of the data



25

VC METHOD



VC METHOD 26



Direct 
Kernel 
Second Approach
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ESTIMATING THE QUANTUM KERNEL



VC METHOD 30



Experimental 
Results
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VC METHOD 32



LETS US SEE EVERYTHING LIVE AND 
COLORED

https://ibm-q4ai.mybluemix.net/

🔑 LIVE TEST
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https://ibm-q4ai.mybluemix.net/


OPEN PROBLEMS:
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How do we find interesting 
Quantum kernels and 
feature spaces



CONCLUSION

The authors have experimentally have showed a classifier 
that exploits quantum feature space and proved to achieve 
100% success despite the presence of noise
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Thanks!
Any questions?

You can find me at @username & user@mail.me
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