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Machine Learning + Quantum Computing
= Amazing future.

&K

34 -

¥
v"(' S— ; m—




Introduction

Let’s do a little prep



Q+ML e Both changing the way computation
Is being done.

e Both helping to solve previously
untenable problems



MACHINE

e Kernel methods for ML are ubiquitous for
LEARNING pattern recognition

e SVMs - well known for classification
problems



What happens if:

LIMITATIONS - ML e Feature space becomes very large

e Kernel functions become expensive to
estimate



Quantum algorithms offers

e Exponential speed-ups by taking

SOLUTION BY advantage of the exponentially large
QUANTUM alg. quantum space - Hilbert space

o through controllable entanglement
and interference



keywords

Kernel - a set of mathematical functions that
take data as input and transform it to required
form.

Entanglement - states of two or more objects
described with reference to each other,
eventhough the individual objects may be
spatially separated

Interference - interfere with other particles
o Byproduct of superposition



“A\Proposed Method

The authors:

® Propose and implement two novel methods on superconducting
processor

e Both methods take advantage of large dimension of quantum hilbert
space to obtain enhanced solution

e The data used were created artificially
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“A\Proposed Method

The authors:

® Presentaquantum algorithm that has potential to run on near-term
quantum devices

© SHORT DEPTH CIRCUITS are the natural class of algorithms for such
noisy devices

e The proposed algorithm takes on the original problem of supervised
learning: construction of a classifier.
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“A\\Proposed Method

e Method One: Use variational Circuit to generate a separating hyperplane
In the quantum feature space - very much like linear binary classifier

e Method Two: Use quantum computer to estimate the kernel function of
the quantum feature space directly
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Necessary Conditions:

® To obtain quantum advantage in both methods, the
Kernel must be very Hard
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A2 keywords

Near - Term

o Noisy devices without full error correction

o Decoherence, gate errors and measurement
errors limit the usefulness

o Algorithms will need to be designed with
noisy hardware in mind



CLASSICAL
SVM



Classical SVM
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rChoosing the right feature map

Not linearly separable datasets may become linearly
separable by increasing dimensionality
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Variationa!
Clrcmt

s directly related to lin ary
IaSS|f|ers (SVMs)



VC METHOD



VC METHOD




VC METHOD

Minimize likelihood of predicting a wrong label

Sigmoid focuses on the really bad cases of the data
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VC METHOD

Minimize likelihood of predicting a wrong label

Sigmoid focuses on the really bad cases of the data
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VC METHOD

Minimize likelihood of predicting a wrong label

Sigmoid focuses on the really bad cases of the data
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VC METHOD
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Experimental
Results
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A2 LIVE TEST

LETS US SEE EVERYTHING LIVE AND
COLORED

https://ibm-gq4ai.mybluemix.net/
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https://ibm-q4ai.mybluemix.net/

OPEN PROBLEMS:

How do we find interesting
Quantum kernels and
feature spaces
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CONCLUSION

The authors have experimentally have showed a classifier
that exploits quantum feature space and proeved to achieve
100% success despite the presence of noise
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Thanks!

Any questions?

You can find me at @username & user@mail.me
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