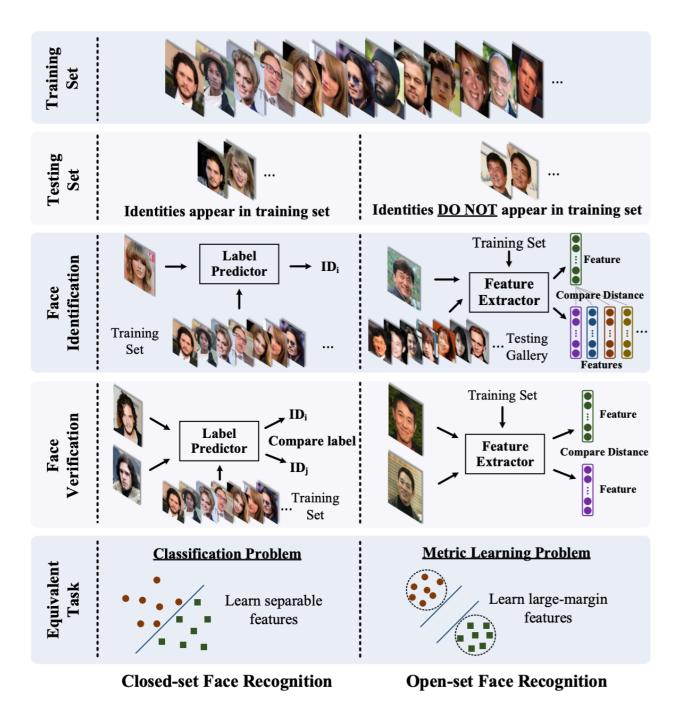
CosFace: Large Margin Cosine Loss for Deep Face Recognition

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu


Presented by Mikhail Liz

What is the task of face recognition?

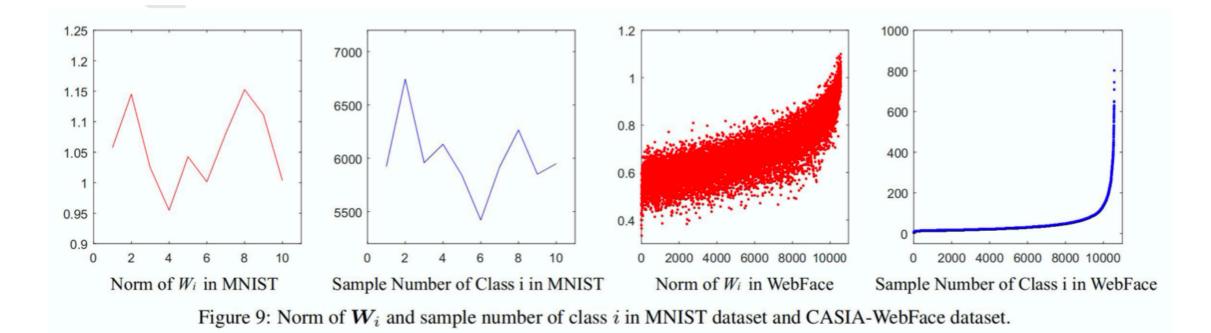
The central task of face recognition, including face verification and identification, involves face feature discrimination.

Two ways to solve the problem

Open-set:

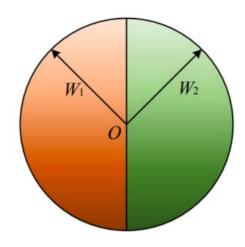
- Intrinsically large intraclass variation
- High inter-class similarity

Original Softmax Loss


$$L_s = \frac{1}{N} \sum_{i=1}^{N} -\log p_i = \frac{1}{N} \sum_{i=1}^{N} -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^{C} e^{f_j}}$$

where p_i denotes the posterior probability of x_i being correctly classified. N is the number of training samples and C is the number of classes

$$f_j = W_j^T x = \|W_j\| \|x\| \cos \theta_j$$


where θ_i is the angle between W_i and x_i

Normalized version of Softmax Loss (NSL)

$$\|\boldsymbol{W}_{i}\| = 1, b_{i} = 0$$

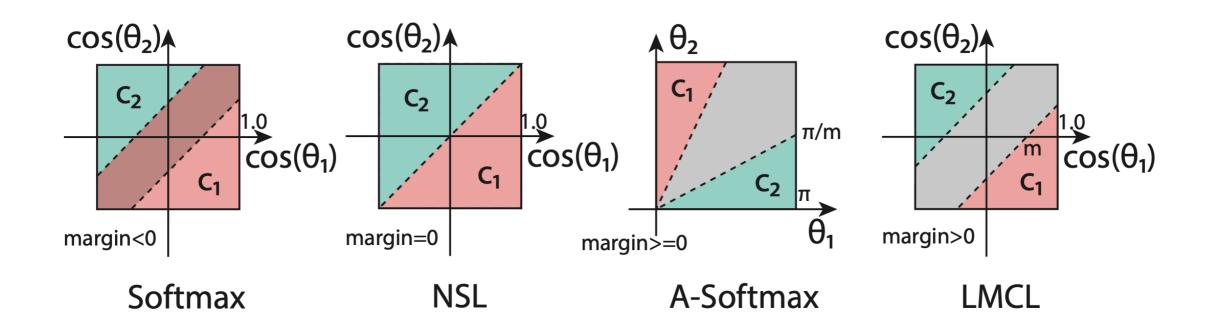
$$L_{\text{modified}} = \frac{1}{N} \sum_{i} -\log\left(\frac{e^{\|\boldsymbol{x}_{i}\|\cos(\theta_{y_{i},i})}}{\sum_{j} e^{\|\boldsymbol{x}_{i}\|\cos(\theta_{j,i})}}\right)$$

Angular Softmax (A-Softmax)

$$\begin{split} L_{\text{ang}} &= \frac{1}{N} \sum_{i} -\log \Big(\frac{e^{\|\boldsymbol{x}_{i}\| \cos(m\theta_{y_{i},i})}}{e^{\|\boldsymbol{x}_{i}\| \cos(m\theta_{y_{i},i})} + \sum_{j \neq y_{i}} e^{\|\boldsymbol{x}_{i}\| \cos(\theta_{j,i})}} \Big) \\ \theta_{1} &\in [0, \frac{\pi}{m}], m \geq 2 \\ C_{1} &: \cos(m\theta_{1}) \geq \cos(\theta_{2}), \\ C_{2} &: \cos(m\theta_{2}) \geq \cos(\theta_{1}). \end{split}$$

$$\begin{split} L_{\text{ang}} &= \frac{1}{N} \sum_{i} -\log \Big(\frac{e^{\|\boldsymbol{x}_{i}\| \psi(\theta_{y_{i},i})}}{e^{\|\boldsymbol{x}_{i}\| \psi(\theta_{y_{i},i})} + \sum_{j \neq y_{i}} e^{\|\boldsymbol{x}_{i}\| \cos(\theta_{j,i})}} \Big) \end{split}$$

where $\psi(\theta_{y_i,i}) = (-1)^k \cos(m\theta_{y_i,i}) - 2k$ - monotonically decreasing, and $\theta_{y_i,i} \in \left[\frac{k\pi}{m}, \frac{(k+1)\pi}{m}\right]$ and $k \in [0, m-1]$


Large Margin Cosine Loss (LMCL)

$$L_{lmc} = \frac{1}{N} \sum_{i} -\log \frac{e^{s(\cos(\theta_{y_i,i})-m)}}{e^{s(\cos(\theta_{y_i,i})-m)} + \sum_{j \neq y_i} e^{s\cos(\theta_{j,i})}},$$

$$||x|| = s$$

$$\cos(\theta_j, i) = W_j^T x_i$$

The comparison of decision margins

Results

Method	LFW	YTF	MF1	MF1
			Rank1	Veri.
Softmax Loss [23]	97.88	93.1	54.85	65.92
Softmax+Contrastive [30]	98.78	93.5	65.21	78.86
Triplet Loss [29]	98.70	93.4	64.79	78.32
L-Softmax Loss [24]	99.10	94.0	67.12	80.42
Softmax+Center Loss [42]	99.05	94.4	65.49	80.14
A-Softmax [23]	99.42	95.0	72.72	85.56
A-Softmax-NormFea	99.32	95.4	75.42	88.82
LMCL	99.33	96.1	77.11	89.88

All the methods in this table are using the same training data and the same 64-layer CNN architecture.

Thank you for your attention!