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Figure 1: The Transformer - model architecture.
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Figure 1: The different masking strategy between BERT and ERNIE



Different masking strategies

We use prior knowledge to enhance our pretrained language model. Instead of
adding the knowledge embedding directly, we proposed a multi-stage knowledge
masking strategy to integrate phrase and entity level knowledge into the Language
representation.
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Basic-level Masking [mask] Potter is a series [mask] fantasy novels [mask] by British author ). [mask] Rowling
Entity-level Masking Harry Potter is a series [mask] fantasy novels [mask] by British author [mask] [mask] [mask]
Phrase-level Masking Harry Potter is [mask] [mask] [mask] fantasy novels [mask] by British author [mask] [mask] [mask]

Figure 2: Different masking level of a sentence



Examples

No | Text

1
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In September 2006, married Cecilia Cheung. They had two sons
the older one is Zhenxuan Xie and the younger one is Zhennan Xie.
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The Reform Movement of 1898, also known as the Hundred-Day Reform,
was a bourgeois reform carried out by the reformists such as

| and Qichao Liang through Emperor Guangxu.
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Hyperglycemia is caused by defective secretion or impaired
biological function, or both. Long—term hyperglycemia in diabetes
leads to chronic damage and dysfunction of various tissues,
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Predict by ERNIE

Tingfeng Xie

BEH

Youwei Kang

BSE

Insulin

Predict by BERT
HHRET

Zhenxuan Xie

IMtE

Shichang Sun

R

(Not a word in
Chinese)

Answer

Tingfeng Xie

BAEY

Youwei Kang

I TT

Insulin



Results

ERNIE was chosen to have the same model size as BERT-base for comparison
purposes. ERNIE uses 12 encoder layers, 768 hidden units and 12 attention heads.

Table 1: Results on 5 major Chinese NLP tasks

Task Metrics Bert ERNIE
dev test dev test

XNLI accuracy | 78.1 77.2 | 799 (+1.8) 78.4(+1.2)
LCQMC accuracy | 88.8 87.0 | 89.7(+0.9) 87.4(+0.4)
MSRA-NER F1 94.0 92.6 | 950(+1.0) 93.8(+1.2)
ChnSentiCorp | accuracy | 94.6 94.3 | 95.2 (+0.6) 95.4 (+1.1)
nilnecdbas mrr 947 94.6 | 95.0(+0.3) 95.1 (+0.5)
F1 80.7 80.8 | 82.3(+1.6) 82.7(+1.9)
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One More Idea

Specific Tasks

Text Similarity Question Answering Sentiment Analysis - Natural Language Inference
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Multi-task Learning
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[SEP]
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[SEP]
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Multi-task Learning

Pre-Training Tasks

Tasks ERNIE model 1.0 ERNIE model 2.0 (en) ERNIE model 2.0 (zh)
Knowledge Masking
— Capitalization Prediction Knowledge
Word-aware Knowledge Maskin s
9 g Token-Document Relation Masking
Prediction
Structure Sentence
aware Sentence Reordering Reordering
Sentence Distance
Semantic- Next Sentence Discourse Relation Discourse Relation
aware Prediction IR Relevance



Sequential Multi-task Learning
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Losses and Data

Task Token-Level Loss Sentence-Level Loss

Corpus Knowledge Capital Token-Document Sentence Sentence | Discourse IR
Masking Prediction Relation Reordering | Distance | Relation | Relevance

Encyclopedia v v v v v X X

BookCorpus v v v v v X X

News v v v v v 4 X

Dialog v v v v v X %

IR Relevance Data X X X X % X v

Discourse Relation Data X X X X X v X




Results: GLUE

BASE model LARGE model
Task(Metrics) Test Dev Test
BERT ERNIE 2.0 | BERT XLNet ERNIE2.0 BERT ERNIE 2.0

CoLA (Matthew Corr.) 52.1 55.2 60.6 63.6 65.4 60.5 63.5

SST-2 (Accuracy) 93.5 95.0 93.2 95.6 96.0 94.9 95.6
MRPC (Accurary/F1) 84.8/88.9  86.1/89.9 | 88.0/- 89.2/- 89.7/- 85.4/89.3  87.4/90.2
STS-B (Pearson Corr./Spearman Corr.) | 87.1/85.8  87.6/86.5 90.0/- 91.8/- 92.3/- 87.6/86.5  91.2/90.6
QQP (Accuracy/F1) 89.2/71.2  89.8/73.2 | 91.3/- 91.8/- 92.5/- 89.3/72.1  90.1/73.8
MNLI-m/mm (Accuracy) 84.6/83.4  86.1/85.5 86.6/-  89.8/- 89.1/- 86.7/85.9  88.7/88.8

QNLI (Accuracy) 90.5 92.9 92.3 93.9 94.3 92.7 94.6

RTE (Accuracy) 66.4 74.8 70.4 83.8 85.2 70.1 80.2

WNLI (Accuracy) 65.1 65.1 - - - 65.1 67.8

AX(Matthew Corr.) 34.2 374 - - - 39.6 48.0

Score 78.3 80.6 - - - 80.5 83.6

Table 5: The results on GLUE benchmark, where the results on dev set are the median of five runs and the results on test set are
scored by the GLUE evaluation server (https://gluebenchmark.com/leaderboard). The state-of-the-art results are in bold. All of
the fine-tuned models of AX is trained by the data of MNLI.
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