ERNIE: Enhanced Representation through Knowledge Integration

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu

Baidu Inc. (2019)

Pre-trained language representations

Pre-trained language representations King Queen Nomo Word2Vec ELMo BERT

ERNIE

BERT

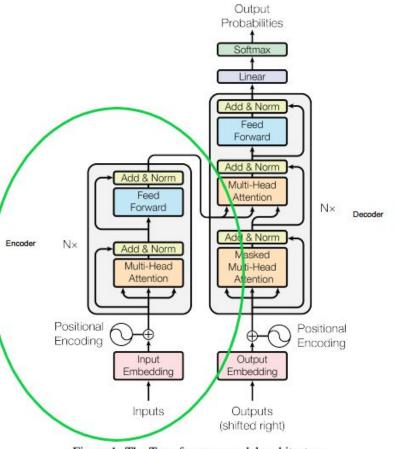
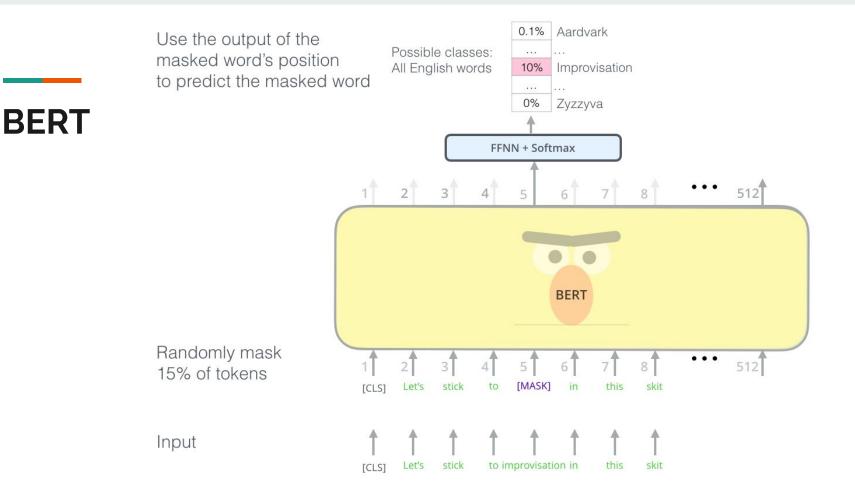



Figure 1: The Transformer - model architecture.

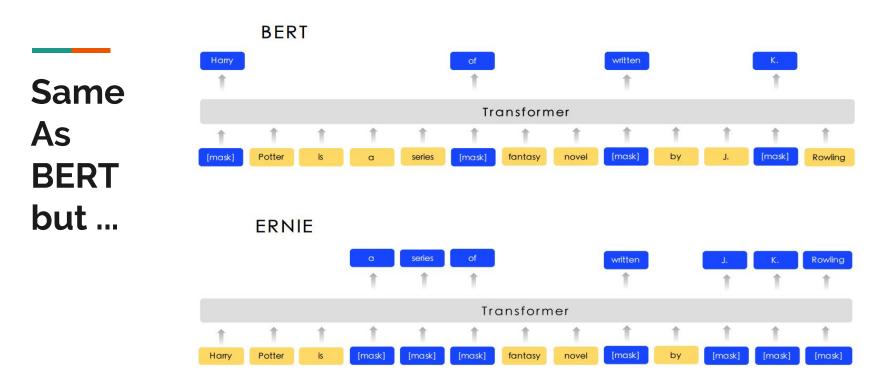


Figure 1: The different masking strategy between BERT and ERNIE

Different masking strategies

We use prior knowledge to enhance our pretrained language model. Instead of adding the knowledge embedding directly, we proposed a multi-stage knowledge masking strategy to integrate phrase and entity level knowledge into the Language representation.

Sentence	Harry	Potter	is	а	series	of	fantasy	novels	written	by	British	author	J.	К.	Rowling
Basic-level Masking	[mask]	Potter	is	а	series	[mask]	fantasy	novels	[mask]	by	British	author	J.	[mask]	Rowling
Entity-level Masking	Harry	Potter	is	а	series	[mask]	fantasy	novels	[mask]	by	British	author	[mask]	[mask]	[mask]
Phrase-level Masking	Harry	Potter	is	[mask]	[mask]	[mask]	fantasy	novels	[mask]	by	British	author	[mask]	[mask]	[mask]

Figure 2: Different masking level of a sentence

Examples

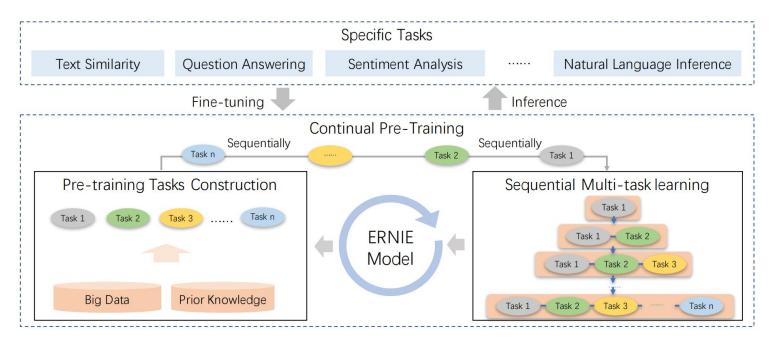
No	Text	Predict by ERNIE	Predict by BERT	Answer
1	2006年9月,与张柏芝结婚, 两人婚后育有两儿子——大儿子Lucas谢振轩, 小儿子Quintus谢振南;	谢霆锋	谢振轩	谢霆锋
	In September 2006, married Cecilia Cheung. They had two sons, the older one is Zhenxuan Xie and the younger one is Zhennan Xie.	Tingfeng Xie	Zhenxuan Xie	Tingfeng Xie
2	戊戌变法,又称百日维新,是、梁启超等维新派人士通过光绪帝进行 的一场资产阶级改良。	康有为	孙世昌	康有为
	The Reform Movement of 1898, also known as the Hundred-Day Reform, was a bourgeois reform carried out by the reformists such as and Qichao Liang through Emperor Guangxu.	Youwei Kang	Shichang Sun	Youwei Kang
3	高血糖则是由于分泌缺陷或其生物作用受损,或两者兼有引起。糖尿病时长期存在的高血糖,导致各种组织,特别是眼、肾、心脏、血管、神经的慢性损害、功能障碍。	胰岛素	糖糖内	胰岛素
	Hyperglycemia is caused by defective secretion or impaired biological function, or both. Long-term hyperglycemia in diabetes leads to chronic damage and dysfunction of various tissues, especially eyes, kidneys, heart, blood vessels and nerves.	Insulin	(Not a word in Chinese)	Insulin

Results

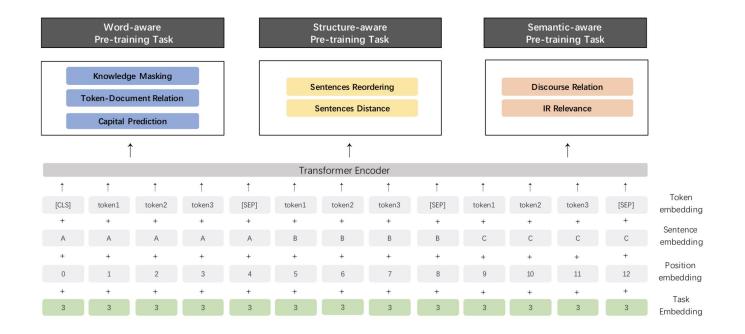
ERNIE was chosen to have the same model size as BERT-base for comparison purposes. ERNIE uses 12 encoder layers, 768 hidden units and 12 attention heads.

Task	Metrics	B	ert	ERNIE			
Task	wienies	dev	test	dev	test		
XNLI	accuracy	78.1	77.2	79.9 (+1.8)	78.4 (+1.2)		
LCQMC	CQMC accuracy		87.0	89.7 (+0.9)	87.4 (+0.4)		
MSRA-NER	MSRA-NER F1		92.6	95.0 (+1.0)	93.8 (+1.2)		
ChnSentiCorp	accuracy	94.6	94.3	95.2 (+0.6)	95.4 (+1.1)		
nlnaa dhaa	mrr	94.7	94.6	95.0 (+0.3)	95.1 (+0.5)		
nlpcc-dbqa	F1	80.7	80.8	82.3 (+1.6)	82.7 (+1.9)		

Table 1: Results on 5 major Chinese NLP tasks

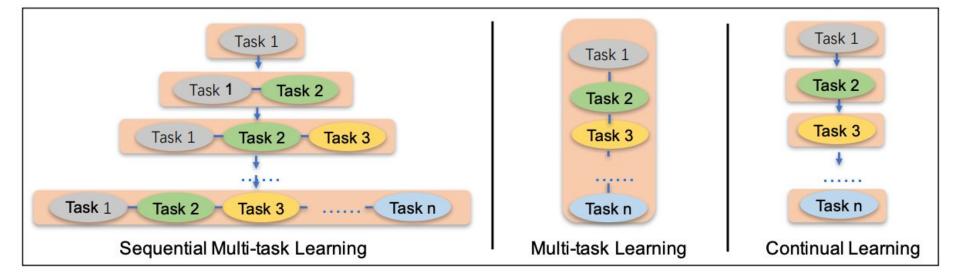

ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, Haifeng Wang


Baidu Inc. (November 2019)

One More Idea

Multi-task Learning



Multi-task Learning

Pre-Training Tasks

Tasks	ERNIE model 1.0	ERNIE model 2.0 (en)	ERNIE model 2.0 (zh)
Word-aware	✓ Knowledge Masking	 Knowledge Masking Capitalization Prediction Token-Document Relation Prediction 	Knowledge Masking
Structure- aware		Sentence Reordering	Sentence Reordering Sentence Distance
Semantic- aware	Vext Sentence Prediction	V Discourse Relation	✓ Discourse Relation✓ IR Relevance

Sequential Multi-task Learning

Losses and Data

Task		Token-Level	Loss	Sentence-Level Loss				
Corpus	Knowledge	Capital	Token-Document	Sentence	Sentence	Discourse	IR	
	Masking	Prediction	Relation	Reordering	Distance	Relation	Relevance	
Encyclopedia	\checkmark	\checkmark	\checkmark	 ✓ 	\checkmark	×	×	
BookCorpus	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	
News	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×	
Dialog	✓	\checkmark	\checkmark	~	✓	×	×	
IR Relevance Data	×	×	×	×	×	×	\checkmark	
Discourse Relation Data	×	×	×	×	×	\checkmark	×	

Results: GLUE

	BASE	E model	LARGE model					
Task(Metrics)	Test			Dev		Test		
	BERT	ERNIE 2.0	BERT	XLNet	ERNIE 2.0	BERT	ERNIE 2.0	
CoLA (Matthew Corr.)	52.1	55.2	60.6	63.6	65.4	60.5	63.5	
SST-2 (Accuracy)	93.5	95.0	93.2	95.6	96.0	94.9	95.6	
MRPC (Accurary/F1)	84.8/88.9	86.1/89.9	88.0/-	89.2/-	89.7/-	85.4/89.3	87.4/90.2	
STS-B (Pearson Corr./Spearman Corr.)	87.1/85.8	87.6/86.5	90.0/-	91.8/-	92.3/-	87.6/86.5	91.2/90.6	
QQP (Accuracy/F1)	89.2/71.2	89.8/73.2	91.3/-	91.8/-	92.5/-	89.3/72.1	90.1/73.8	
MNLI-m/mm (Accuracy)	84.6/83.4	86.1/85.5	86.6/-	89.8/-	89.1/-	86.7/85.9	88.7/88.8	
QNLI (Accuracy)	90.5	92.9	92.3	93.9	94.3	92.7	94.6	
RTE (Accuracy)	66.4	74.8	70.4	83.8	85.2	70.1	80.2	
WNLI (Accuracy)	65.1	65.1	-	-	-	65.1	67.8	
AX(Matthew Corr.)	34.2	37.4	-	-	-	39.6	48.0	
Score	78.3	80.6	-	-	-	80.5	83.6	

Table 5: The results on GLUE benchmark, where the results on dev set are the median of five runs and the results on test set are scored by the GLUE evaluation server (https://gluebenchmark.com/leaderboard). The state-of-the-art results are in bold. All of the fine-tuned models of AX is trained by the data of MNLI.

