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Goal and Obijectives

o GOAL
e The Goal of the research is to estimate the levels of poverty in Zambia
with the help machine learning and remote sensing.
o Objectives

e To use machine learning methods for economic analysis
e To use remote sensing data in poverty estimation
e To estimate poverty for Zambia at lower administrative levels
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Object and Subject

e OBJECT
e Country Zambia
@ Subject
e We considered the level of poverty in Zambia;
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Goal number 1 of the sdgs is “end poverty in all its forms everywhere”. J
It is estimated that One Billion people, or 11 percent of the world
population, still live in extreme poverty (Less than 2 Dollar per day). J

The lack of reliable data in developing countries is a major obstacle to
sustainable development, food security, and disaster relief.
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Similar Works

@ Neal Jean, Marshall Burke, Michael Xie, W. Matthew Davis, David B.
Lobell, Stefano Ermon; S 2016. Combining satellite imagery and
machine learning to predict poverty
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Methodology

@ We shall construct a linear chain transfer learning graph with : V =
(P1, P2, P3) and E = (P1, P2), (P2, P3).

@ The first transfer learning problem P1 is object recognition on
ImageNet

@ The second problem P2 is predicting nighttime light intensity from
daytime satellite imagery, simultaneously learning features that are
useful for poverty prediction;

@ The third problem P3 is predicting poverty from daytime satellite
imagery.
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Proposed Methodology Simplified Pipeline
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Methods Explained

@ First Step
o First, we start with a convolutional neural network (CNN) model that
has been pretrained on ImageNet. In learning to classify each image
correctly, the model learns to identify low level image features such as
edges and corners.
@ Second Step
o Next, we build on the knowledge gained from this image classification
task and fine-tune the CNN on a new task, training it to predict the
nighttime light intensities corresponding to input daytime satellite
imagery. The trained CNN can be treated as a feature extractor that
has learned a nonlinear mapping from each input image to a concise
feature vector representation.
@ Third Step
o In the final step, we use mean cluster-level values from the survey data
along with the corresponding image features extracted from daytime
imagery by the CNN to train ridge regression models that can estimate
cluster-level expenditures/Poverty levels. Regularization in the ridge
model guards against overfitting, a potential challenge given the high
dimensionality of the extracted features and the relatively small survey
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Evaluation Metrics

@ R-squared
e It is a statistical measure that represents the proportion of the variance
for a target variable (Poverty rate) that is explained by the independent
variables (Extracted features). R-squared values range from 0 to 1 and
are commonly stated as percentages.
@ Root Mean Squared Error (RMSE)

e The average magnitude of the residuals or error.
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Step 2 - Visualization of features(Further Illustrated)

Figure: Four different convolutional filters in the convolutional neural network
model used for extracting features. Source: Combining satellite imagery and

machine learning to predict
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@ World Bank;
e ZDHS

e Central Statistical Office, Zambia (Living Conditions Monitoring
Survey Dataset)

@ National Oceanic and Atmospheric Administration
@ Google (Almost 17,000 images)
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Expected Results
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Figure: Expected Results.
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Predictions and reported R-squared values from fivefold
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Figure: Expected Results.
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Why are our Results Poor?

@ We used Free Satelite Images and as such we could only obtain the
2019 Images ;

@ Tunning was done on the 2016 Satelite Images
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@ Tune my own model ;

@ Use newer data; the 2018 Dataset which will be available starting
third week of January)

@ Try to train tunning using WikiSatNet
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Thank You for your Attention
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