# EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

#### Owen Siyoto

Novosibirsk State University

o.siyoto@g.nsu.ru

Academic Serminar

December 25, 2019

### Inroduction

### 2 Scaling

- 3 Combined Scaling
- Proposed Compound Scaling
- 5 EfficientNet Architecture
- 6 Results



э

Recently published by Google; EfficientNet a newly designed CNN (convolutional neural network) that set new records for both accuracy and computational efficiency.

The paper demonstrates an effective method of scaling up MobileNets and ResNet.

The Authors of the paper: Mingxing Tan and Quoc V. Le.

### Scaling

#### Depth

- how deep the networks is equivalent to the number of layers in it
- most common way of scaling; scaling up or down is done by adding/removing layers respectively
- deeper network can capture richer and more complex features, and generalizes well on new tasks
- Width
  - how wide the network is which is sometimes measured by the number of channels
  - capture more fine-grained features and also used to keep models small
  - accuracy saturates quickly with larger width
- Resolution
  - simply means the image resolution that is being passed to a CNN
  - in high-resolution images, the features are more fine-grained
  - the accuracy gain diminishes very quickly

### Scaling Illustration



#### EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

#### Figure: Model Scaling

| A    | C        | (MCIP | ١. |
|------|----------|-------|----|
| Owen | Siyoto ( | 1430  | ,  |

### Scaling a model of different dimensions and Coefficients

Scaling up any dimension improves accuracy, but the accuracy gain diminishes for bigger models



Figure: Scaling a model of different dimensions and Coefficients.

Owen Siyoto (NSU)

December 25, 2019 6 / 15

- It is possible to scale two or three dimensions arbitrarily; but arbitrary scaling is a tedious task
- Most of the times, manual scaling results in sub-optimal accuracy and efficiency
- In order to pursue better accuracy and efficiency, it is critical to balance all dimensions of network width, depth, and resolution during ConvNet scaling.

### Scaling Network Width for Different Baseline Networks



Figure: Scaling Network Width for Different Baseline Networks

Owen Siyoto (NSU)

December 25, 2019 8 / 15

Proposed Compound Scaling

depth: 
$$d = \alpha^{\phi}$$
  
width:  $w = \beta^{\phi}$   
resolution:  $r = \gamma^{\phi}$   
s.t.  $\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$   
 $\alpha \ge 1, \beta \ge 1, \gamma \ge 1$ 

Figure: Proposed Compound Scaling

Owen Siyoto (NSU)

э

The authors proposed a simple yet very effective scaling technique which uses a compound coefficient (phi) to uniformly scale network width, depth, and resolution in a principled way.

Phi is a user-specified coefficient that controls how many resources are available whereas alpha, beta, and gamma specify how to assign these resources to network depth, width, and resolution respectively.

Scaling doesn't change the layer operations, hence it is better to first have a good baseline network and then scale it along different dimensions using the proposed compound scaling.

| · · · |                        |                             |             |             |  |  |  |  |
|-------|------------------------|-----------------------------|-------------|-------------|--|--|--|--|
| Stage | Operator               | Resolution                  | #Channels   | #Layers     |  |  |  |  |
| i     | $\hat{\mathcal{F}}_i$  | $\hat{H}_i 	imes \hat{W}_i$ | $\hat{C}_i$ | $\hat{L}_i$ |  |  |  |  |
| 1     | Conv3x3                | $224 \times 224$            | 32          | 1           |  |  |  |  |
| 2     | MBConv1, k3x3          | $112 \times 112$            | 16          | 1           |  |  |  |  |
| 3     | MBConv6, k3x3          | $112 \times 112$            | 24          | 2           |  |  |  |  |
| 4     | MBConv6, k5x5          | 56 	imes 56                 | 40          | 2           |  |  |  |  |
| 5     | MBConv6, k3x3          | 28 	imes 28                 | 80          | 3           |  |  |  |  |
| 6     | MBConv6, k5x5          | 28 	imes 28                 | 112         | 3           |  |  |  |  |
| 7     | MBConv6, k5x5          | $14 \times 14$              | 192         | 4           |  |  |  |  |
| 8     | MBConv6, k3x3          | $7 \times 7$                | 320         | 1           |  |  |  |  |
| 9     | Conv1x1 & Pooling & FC | 7 × 7                       | 1280        | 1           |  |  |  |  |

Figure: EfficientNet-B0 baseline network

Owen Siyoto (NSU)

11/15

| Model                                      | Top-1 Acc. | Top-5 Acc. | #Params | Ratio-to-EfficientNet | #FLOPS | Ratio-to-EfficientNet |
|--------------------------------------------|------------|------------|---------|-----------------------|--------|-----------------------|
| EfficientNet-B0                            | 76.3%      | 93.2%      | 5.3M    | 1x                    | 0.39B  | 1x                    |
| ResNet-50 (He et al., 2016)                | 76.0%      | 93.0%      | 26M     | 4.9x                  | 4.1B   | 11x                   |
| DenseNet-169 (Huang et al., 2017)          | 76.2%      | 93.2%      | 14M     | 2.6x                  | 3.5B   | 8.9x                  |
| EfficientNet-B1                            | 78.8%      | 94.4%      | 7.8M    | 1x                    | 0.70B  | 1x                    |
| ResNet-152 (He et al., 2016)               | 77.8%      | 93.8%      | 60M     | 7.6x                  | 11B    | 16x                   |
| DenseNet-264 (Huang et al., 2017)          | 77.9%      | 93.9%      | 34M     | 4.3x                  | 6.0B   | 8.6x                  |
| Inception-v3 (Szegedy et al., 2016)        | 78.8%      | 94.4%      | 24M     | 3.0x                  | 5.7B   | 8.1x                  |
| Xception (Chollet, 2017)                   | 79.0%      | 94.5%      | 23M     | 3.0x                  | 8.4B   | 12x                   |
| EfficientNet-B2                            | 79.8%      | 94.9%      | 9.2M    | 1x                    | 1.0B   | 1x                    |
| Inception-v4 (Szegedy et al., 2017)        | 80.0%      | 95.0%      | 48M     | 5.2x                  | 13B    | 13x                   |
| Inception-resnet-v2 (Szegedy et al., 2017) | 80.1%      | 95.1%      | 56M     | 6.1x                  | 13B    | 13x                   |
| EfficientNet-B3                            | 81.1%      | 95.5%      | 12M     | 1x                    | 1.8B   | 1x                    |
| ResNeXt-101 (Xie et al., 2017)             | 80.9%      | 95.6%      | 84M     | 7.0x                  | 32B    | 18x                   |
| PolyNet (Zhang et al., 2017)               | 81.3%      | 95.8%      | 92M     | 7.7x                  | 35B    | 19x                   |
| EfficientNet-B4                            | 82.6%      | 96.3%      | 19M     | 1x                    | 4.2B   | 1x                    |
| SENet (Hu et al., 2018)                    | 82.7%      | 96.2%      | 146M    | 7.7x                  | 42B    | 10x                   |
| NASNet-A (Zoph et al., 2018)               | 82.7%      | 96.2%      | 89M     | 4.7x                  | 24B    | 5.7x                  |
| AmoebaNet-A (Real et al., 2019)            | 82.8%      | 96.1%      | 87M     | 4.6x                  | 23B    | 5.5x                  |
| PNASNet (Liu et al., 2018)                 | 82.9%      | 96.2%      | 86M     | 4.5x                  | 23B    | 6.0x                  |
| EfficientNet-B5                            | 83.3%      | 96.7%      | 30M     | 1x                    | 9.9B   | 1x                    |
| AmoebaNet-C (Cubuk et al., 2019)           | 83.5%      | 96.5%      | 155M    | 5.2x                  | 41B    | 4.1x                  |
| EfficientNet-B6                            | 84.0%      | 96.9%      | 43M     | 1x                    | 19B    | 1x                    |
| EfficientNet-B7                            | 84.4%      | 97.1%      | 66M     | 1x                    | 37B    | 1x                    |
| GPipe (Huang et al., 2018)                 | 84.3%      | 97.0%      | 557M    | 8.4x                  | -      | -                     |

We omit ensemble and multi-crop models (Hu et al., 2018), or models pretrained on 3.5B Instagram images (Mahajan et al., 2018).

#### Figure: EfficientNet Performance Results on ImageNet

Owen Siyoto (NSU)

12 / 15

### EfficientNet Performance Results on ImageNet



Figure: FLOPS vs. ImageNet Accuracy.

Owen Siyoto (NSU)

- EfficientNet paper: https://arxiv.org/abs/1905.11946 .
- Official released code: https://github.com/tensorflow/tpu/tree/master/models/official/efficient

## Thank You for your Attention