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Introduction

A considerable problem in theory and practice of artificial recurrent
neural networks (RNN) is the training of recurrent connections.

An approach to avoid these problems is the Echo State approach.
The Echo State Networks (ESN) consist of three layer:
I An input layer
I a hidden layer with recurrent connections (called dynamical

reservoir (DR))
I and the output layer



Echo State Networks

Echo State Networks (as well as most other neural networks)
consist of neurons and links. Each neuron has a time dependent
activation. We distinguish three kinds of neurons:
I input units providing external activations u ∈ RK

I hidden units with internal activations x ∈ RN

I output units which generate the systems output signal y ∈ RL

The connections between neurons are weighted. Matrices are
usually denoted by W. The activations are calculated by

x(n + 1) = f (Wx(n) + W inu(n + 1) + W backy(n)) (1)

y(n + 1) = f out(W out(u(n + 1), x(n + 1), y(n))) (2)



Echo State Networks

Figure 1: Layers of an Echo State Network.



Echo State Networks

Definition 1. Let u(n) ∈ U and x(n) ∈ A with compact spaces U
and A. Assume that the network has no output feedback
connections. Then, the network has Echo States if the state x(n) is
uniquely determined by any left-infinite input sequence ū−∞. More
precisely, this means that for every input sequence
..., u(n − 1), u(n) ∈ U−N, for all state sequences ..., x(n − 1), x(n)
and ..., x ′(n − 1), x ′(n) ∈ A−N , where for any i ∈ Z

x(i) = f (W inu(i) + Wx ′(i − 1)) (3)

and
x ′(i) = f (W inu(i) + Wx ′(i − 1)) (4)

if holds that x(n) = x ′(n) for any n.



Echo State Networks

Theorem 2. Assume f = tanh and a network without output
feedback.
1. Let the weight matrix W satisfy σmax = Λ < 1, where σmax is

it’s largest singular value. Then
||x(n + 1)− x ′(n + 1)||2 < Λ||x(n)− x ′(n)||2 for all inputs
u(n + 1), for all states x(n), x ′(n) ∈ [−1, 1]N . This implies
Echo States for all inputs u(n + 1), for all states
x(n), x ′(n) ∈ [−1, 1]N .

2. Let the weight matrix W have a spectral radius ρ(W ) > 1,
where ρ(W ) is an eigenvalue of W with the largest absolute
value. Then the network has an asymptotically unstable null
state. This implies that it has no Echo States for any input set
U containing 0 and admissible state set A = [−1, 1]N .



Construction

The dynamical reservoir typically is initialized randomly and stays
untrained. Herbert Jaeger (Jaeger (2002)) suggested the following
procedure:
1. Randomly generate an internal weight matrix W0

2. Normalize W0 to a matrix W1 with unit spectral radius by
putting W1 = (1/|ρ(W0)|)W0, where |ρ(W0)| is the spectral
radius of W0.

3. Scale W1 to W = αW1, where α < 1, such that finally W has
a spectral radius of α.

Our approach is similar: Instead of Jaeger’s step 1 and 2, we specify
classes of matrices with spectral radius 1 from which W 0 is taken



Sparse and orthogonal reservoir matrices

Algorithm SORM:
1. Permute the rows of I to avoid small cycles. Then the singular

values as well as the absolute values of the eigenvalues of the
resulting matrix all are 1.

2. Choose some rotation matrix Q(h, k , φ) and multiply it from
left or from right by the current weight matrix.

3. Repeat step 2 until the desired target density is reached.



CyclicSORMs

Algorithm CyclicSORM:
1. Choose a permutation π of cycle length N. The related matrix

is denoted by P.
2. Choose a sparse and orthogonal transformation matrix V.
3. Set W0 := VPV T .



RingOfNeurons and ChainOfNeurons

Let us assume linear activation functions f = id and f out = id for
this section. Then the current activations can be calculated as

x(n) = Wx(n − 1) + w inu(n), (5)

y(n) = woutx(n). (6)

For W and w in generated by the construction of CyclicSORM, we
obtain

x(n) = (λVPV T )x(n − 1) + Ve1u(n) (7)

and
V T x(n) = λPV T x(n − 1) + e1u(n). (8)



RingOfNeurons and ChainOfNeurons

Considering x(n) and x̂(n) = V T x(n) as states of the same but
rotated dynamical system, we can also work with the simpler
version x̂ generated by the network update

x̂(n) = λPx̂(n − 1) + e1u(n) (9)

i.e. with the very simple reservoir matrix P together with input
weights e1.



RingOfNeurons and ChainOfNeurons

According to the permutation matrix P , the internal units of the
simplified network are connected in a cyclic way. The units can be
relabeled such that without loss of generality the reservoir matrix is

Ŵ := λ


0 0 ... 0 1
1 0 ... 0 0
0 ... ... ... ...
... ... ... 0 0
0 ... 0 1 0

 (10)

The neural net with this matrix Ŵ is called RingOfNeurons.



RingOfNeurons and ChainOfNeurons

The activation x1(n) is an uncontrolled superposition of the inputs
u(n − iN), (i ∈ N) which we would like to avoid by forbidding the
connection from the last internal neuron to the first one
(ŵ1,N = 0). It remains

Ŵ := λ


0 0 ... 0 0
1 0 ... 0 0
0 ... ... ... ...
... ... ... 0 0
0 ... 0 1 0

 (11)

The above matrix Ŵ is nilpotent and has only zero eigenvalues.
Such a dynamical reservoir acts like a FIFO-memory. After N steps
the system forgets the input. We will refer to this reservoir as a
ChainOfNeurons.



Experiments

We compare the error rates of ESNs equipped with one of
I StandardMat - the original randomly generated reservoirs
I SORM
I CyclicSORM
I RingOfNeurons
I ChainOfNeurons



Captions

I ρ - spectral radius, or constant connection weight along the
ChainOfNeurons, respectively

I N - number of reservoir neurons
I RDens - connection density of the reservoir
I FScale - feedback scale: bound for weights of output-hidden

connections
I FDens - feedback density: portion of used output-hidden

connections
I IScale - input scale: bound for weights of input-hidden

connections (see below)
I IDens - connection density from the input neurons into the

reservoir; x - means only first input unit/vector will be used



Delayline

The neural net gets random inputs (uniformly distributed over
[-0.5, 0.5]), and the task is to reproduce those inputs after a given
time delay at the output of the neural net.

ρ IScale IDens
ChainOfNeurons 0.95 1.0 ×
RingOfNeurons 0.95 1.0 ×
CyclicSORM 0.95 1.0 ×

SORM 0.95 1.0 0.1
StandardMat 0.99 1.0 0.1

Table 1: Best parameters for the delayline experiment optimized by hand



Delayline

Figure 2: Delayline experiment executed with different reservoir types and
averaged over 50 different initializations



Pattern detection

The task is to distinguish between a known pattern (six consecutive
values p1, ..., p6 ∈ [−0.5, 0.5]) and a random sequence. The input
is random sequence merged with this pattern. The intervals
between two pattern are of random length.
I Two data sets with 10000 elements + 200 for washout. One is

for training, the other is for validation.
I The NN contains 1 input, 1 output and 50 hidden neurons.
I Four dimensions of grid parameters search - bias scaling value,

input connection density, scaling value for the input and
reservoir weights.

I We say the network has detected a pattern if the output
neuron has an activation greater than a certain threshold.



Pattern detection

ρ IScale IDens
ChainOfNeurons 0.1 0.8 1/7
RingOfNeurons 0.1 1.0 1/9
CyclicSORM 0.15 0.9 1/9

SORM 0.1 1.0 1.0
StandardMat 0.05 1.0 1.0

Table 2: Best parameter setup for the pattern detection experiment found
by gridsearch.



Pattern detection

Figure 3: Pattern detection: time series of the random sequence (black),
the merged sequence (blue), the pattern (green), the training signal (red)
and the network output (pink)



Pattern detection

Figure 4: Results of pattern detection experiments averaged over 60
different initialization. The error bars denote the variance.



Mackey-Glass

The task is to do a 1-step ahead prediction of Mackey-Glass time
series. Mackey-Glass is a nonlinear chaotic time series given by
differential equation

ẏ(t) = αy(t − τ)/(1 + y(t − τ)β)− γy(t) (12)

where parameters are set to α = 0.2, β = 10, γ = 0.1. For current
experiment τ = 17. The system is designed
I with 400 reservoir neurons
I one output neuron aiming to predict the next step
I input is organized by feeding back the output of the system



Mackey-Glass

ρ FScale FDens
ChainOfNeurons 0.85 1.1 1.0
RingOfNeurons 0.95 1.1 1.0
CyclicSORM 1.0 1.2 1.0

SORM 1.05 1.2 1.0
StandardMat 1.1 0.9 1.0

Table 3: Best parameters for the Mackey-Glass experiment



Mackey-Glass

Figure 5: Results of the Mackey-Glass experiment executed with different
reservoir types and averaged over 144 different initializations



NARMA

The task is to predict signal for one future step. In this experiment
signal is 10th order NARMA

t(n+1) = 0.3t(n)+0.05t(n)

(
9∑

i=0

t(n − i)

)
+1.5u(n−9)u(n)+0.1

(13)

I NN has 200 hidden, 1 input and 1 output neuron
I The data sets contain 2200 elements each, where first 200

steps are for washout



NARMA

ρ IScale IDens
ChainOfNeurons 0.75 0.95 1/9
RingOfNeurons 0.75 0.95 1/9
CyclicSORM 0.8 0.75 1/9

SORM 0.65 0.45 1/5
StandardMat 0.75 0.2 1/8

Table 4: Best parameters for the NARMA experiment



NARMA

Figure 6: Results of the NARMA experiment executed with different
reservoir types and averaged over 50 different initializations.



Conclusions

Different approaches where compared at 4 academic test scenarios:
I short term memory test
I pattern detection
I discretization of the Mackey-Glass differential equation
I NARMA

Surprisingly simple ChainOfNeurons was shown to be the most
robust in the linear case and performed very well in experiments.
The ChainOfNeurons is not even recurrent system anymore. It
seems that the reservoir does not need internal dynamics for many
tasks.
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