
Deep Learning for symbolic mathematics

presentation by Mikhail Liz

March 2020

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 1 / 16



Content

Introduction.

Deep Learning model.

Mathematical expressions as sequences.

Data Generation.

Results.

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 2 / 16



Introduction
Goals and definitions

Goals

Integrating a function

Solving a first order or second order ordinary

differential equation (ODE)

Typically the following notation is used

f is an arbitrary function, its integral is F

F is an arbitrary function, its derivative is f

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 3 / 16



Introduction
The particular problems

Answers must be completely correct or incorrect.

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 4 / 16



Deep Learning model
Seq2Seq

Seq2Seq model was used for this task. The most important properties of
this model for the task of function integration are:

Both input and output sequence can have arbitrary length and those
lengths can differ

A one-to-one relation from item in input sequence to item in output
sequence is not necessary

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 5 / 16



Mathematical expressions as sequences
Infix notation

Mathematical expressions already are in sequence form, the so-called

infix notation. However, this notation is not very well suited for

processing in a seq2seq model. This is because to make the order of

the operations unambiguous, a lot of parenthesis are needed:

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 6 / 16



Mathematical expressions as sequences
Expressions as trees

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 7 / 16



Mathematical expressions as sequences
Prefix notation

The tree is traversed from top to bottom and from left to right with the
following rules:

If the current node is a primitive value (a number), add it to the
sequence string

If the current node is a binary operation, add the operations symbol
to the sequence string. Then, add the representation of the left child
node (could be recursive). Then, add the representation of the right
child node.

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 8 / 16



Data Generation
Forward Generation

Randomly generate a symbolic function f , then use an

external tool to compute the symbolic integral F . Pairs

(f , F ) produced by this method have the property, that f

often consists of much fewer symbols than F .

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 9 / 16



Data Generation
Backward Generation

Randomly generate a function F , then automatically differentiate it

to receive function f . The pair (f ,F ) is then as training sample.

Pairs (f ,F ) produced by this method have the property, that F most

often consists of fewer symbols than f .

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 10 / 16



Data Generation
Integration By Parts

The algorithm for generating functions with integration by parts:

1 Randomly generate functions F and G

2 Automatically differentiate to obtain f and g

3 If Fg is already part of the training set, we know its integral.

Compute the integral of fG using the formula above

4 If fG is already part of the training set, we know its integral.

Compute the integral of Fg using the formula above

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 11 / 16



Data Generation
Additional steps

Simplification

Expressions are simplified to enforce that the model also

outputs simplified expressions.

Removing invalid expressions

Due to the randomly generated nature of the expressions,

they might contain invalid sub-terms. If they do, remove

those terms from the expressions tree.

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 12 / 16



Results
Testing on single generators

Using training data that was generated by only one of

FWD, BWD or IBP and evaluating the model on data

generated from the same method gives very good results:

FWD: 96,2% accuracy

BWD: 99,7% accuracy

IBP: 99,5% accuracy

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 13 / 16



Results
Comparing to popular mathematical frameworks

Comparison the results with popular mathematical

frameworks using only the BWD generator:

Mathematica (with 30 second timeout): 84.0%

Matlab: 65.2%

Maple: 67.4%

Seq2Seq: 99.6%

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 14 / 16



Results
Comparing across generators

Models were evaluated on one generator and tested on

other generators:

Trained on FWD: 17.2%(BWD), 88.9%(IBP)

Trained on BWD: 27.5%(FWD), 59.2%(IBP)

Trained on BWD+IBP: 56.1%(FWD)

Trained on FWD+BWD+IBP: 94.3%(FWD),

99.7%(BWD), 99.7%(IBP)

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 15 / 16



Thank you for your attention!

presentation by Mikhail Liz Deep Learning for symbolic mathematics March 2020 16 / 16


