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Reinforcement Learning

Definition

Reinforcement learning a machine learning paradigm in which an agent
interacts with the environment E over a number of discrete time steps. At
each time step t, the agent receives a state or observation st and then
chooses an action at from the set of possible actions A according to its
policy π and then get some reward rt .

Rt =
∑T

i=t γ
s−trs - total discounted return from time step t;

Qπ(s, a) = E[Rt |st = s] - action-value function or Q-value function;

Q∗(s, a) = maxπ Q
π(s, a) - the optimal action value function;
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Q-learning and SARSA

Before the learning process begins, Q is initially assigned to an arbitrary
fixed value. Then, at each time, the agent selects an action at , observes a
reward rt , enters a new state st+1 and then Q is updated.

Q-learning - off-policy:
Q(St ,At)→ Q(St ,At) + α[Rt+1 + γmaxa Q(St , a)− Q(St ,At)]

SARSA - on-policy:
Q(St ,At)→ Q(St ,At) + α[Rt+1 + γQ(St+1,At+1)− Q(St ,At)]

Representation

The action-value function Q(s, a) can be explicitly represented by a
two-dimensional table with a total number of entries s × a.
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Deep Reinforcement Learning

The action-value function Q(s, a; θ) is parameterized by θ. The θ can
be derived by a series of iterations from a variety of optimization
methods.

Loss function is L(θ) = E[
(
rt + γmaxa Q(s, a, θ)− Q(s, a, θ)

)2
]. The

target is rt + γmaxa Q(s, a, θ) and the prediction is Q(s, a, θ), where
s is the state encountered after playing action at at state s.

Deep Q-learning

Main ideas of Deep Q-learning: how to lower the correlation of inputs for
training?

Experience replay: sample episodes which were played earlier.

Target Network: update θ only after several steps of optimization.
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Variational Quantum Circuits

The variational quantum circuit is one type of quantum circuits with
tunable parameters which need to be optimized in an iterative manner.
These parameters can be seen as the weights in artificial neural networks.

VQC can approximate an analytical function f (x);

VQC own a better expressive power than the classical function
approximators;

VQC require fewer parameters than a conventional neural network;

It is hard to simulate the VQC with large number of qubits via
classical computers;
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Variational Quantum Deep Q Learning

Target Network

For a target network, two sets of circuit parameters with the same circuit
architecture were constructed. The targeted circuit is updated per 20
steps.

Experience Replay

For experience replay, the replay memory is set for the length of 80 to
adapt to the testing environment Frozen-Lake and length of 1000 for
Cognitive Radio, and the size of training batch is 5 for all of the
environments.

Number of qubits

Computational basis encoding;

4 qubits for Frozen-Lake;

2-5 qubits for Cognitive Radio;

by Kalmutskiy Kirill VARIATIONAL QUANTUM CIRCUITS FOR DEEP REINFORCEMENT LEARNINGMarch 2020 6 / 15



Variational Quantum Deep Q Learning

Algorithm

Initialize replay memory D to capacity N
Initialize action-value function circuit Q with random parameters
for episode = 1,M do

Initialise state s1
for t = 1,T do

With probability ε select a random action at
otherwise select at = maxa Q

∗(st , a; θ)
Execute action at and observe reward rt and next state st+1

Store transition (st , at , rt , st+1) in D
Sample random minibatch of transitions (sj , aj , rj , sj+1) from D
Set yj = rj + γmaxa Q(sj+1, a; θ)
Perform a gradient descent step on (yj − Q(sj , aj ; θ))2

end for
end for
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Computational Basis Encoding

For a general n-qubit state, where cq1,...,qn ∈ C is the amplitude of each
quantum state and each qn ∈ {0, 1}, it can be represented as:

|ψ〉 =
∑

(q1,...,qn)∈{0,1}n
cq1,...,qn |q1〉 ⊗ ...⊗ |qn〉

The encoding procedure is as the following: The decimal number is first
converted into a binary number and then encoded into the quantum states
through single qubit unitary rotation.

For example, the Frozen-Lake state observed by the agent, 12, is first
converted to the binary number 1100, which will be |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉.
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Generic circuit architecture

Parameters labeled α, β, γ, are the ones for iterative optimization. Note
that the grouped box may repeat several times to increase the number of
parameters. The number of qubits can be adjusted to fit the problem. In
this work, the grouped circuit repeats two times and therefore the total
number of circuit parameters subject to optimization is 4× 3× 2 = 24. It
is often to add a bias, so the total number of parameters is 24 + 4 = 28.
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Cognitive Radio

The number of channel is N, there are N time-steps in a full
channel-changing cycle. The number of possible states is thus N2. At
each time-step, the agent can select one of the channel from the set of all
possible channels, which is of number N.

Classical Q-learning: N3 params;
NN Q-learning: 2× N2 + 2× N params;
VQC Q-learning: N × (3× 2 + 1) params;
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Configuration

The list of reward in testing environment Frozen-Lake and Cognitive Radio

The optimization is chosen to be RMSprop with learning rate = 0.01,
alpha = 0.99 and eps = 10−8, which is used widely in deep reinforcement
learning. The batch-size for the experience replay is 5.

To investigate the robustness of proposed VQC against the noise from
current and possible near-term devices, the additional simulation which
included the noises from the real quantum computer was performed using
Qiskit-Aer simulation software.
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Frozen lake
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Cognitive Radio
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Cognitive Radio with noise
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Quantum Advantage on Memory Consumption

Comparison of Classical Reinforcement Learning Algorithms with Discrete
Action Space

1VQ-DQN with amplitude encoding can harvest full logarithmic less parameters compared with classical models.
2The number of parameters in VQ-DQN with computational basis encoding grows only linearly

Comparison of Number of Parameters in Classical Q-Learning and
Quantum Deep Reinforcement Learning
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