NASNet and AutoML

Authors: Google Brain Team
Thursday 12" March, 2020

Presented By: Oladotun Aluko

1. Introduction

2. Methodology
3. Experiments and Results

4. Conclusion

Introduction

Introduction

- Developing neural network image classification models often
requires significant architecture engineering

- Exploring meta-learning to predict new neural network
architecures

- Searching for a good architecture on a proxy dataset and
transferring architecture to a larger dataset so that the
complexity of the architecture is independent of the depth of
the network and the size of input images

- Automating model selection and hyperparameter optimization

Methodology

Methodology

- Using search methods to find convolutional architectures on the
dataset of interest. The main search method used is the Neural
Architecture Search (NAS) framework

- In NAS, a controller recurrent neural network (RNN) samples
child networks with different architectures. The child networks
are trained to convergence to obtain some accuracy on a
held-out validation set. The resulting accuracies are used to
update the controller so that the controller will generate better
architectures over time

Methodology(contd)

Sample architecture A
with probability p

Train a child network
with architecture A to
convergence to get
validation accuracy R

The controller (RNN)

Scale gradient of pby R
to update the controller

Figure 1. Overview of Neural Architecture Search [71]. A con-
troller RNN predicts architecture A from a search space with prob-
ability p. A child network with architecture A is trained to con-
vergence achieving accuracy R. Scale the gradients of p by R to
update the RNN controller.

Methodology(contd)

- The actual work is the design of a novel search space, such that
the best architecture found on the CIFAR-10 dataset would scale
to larger, higher resolution image datasets across a range of
computational settings. This search space is named the NASNet
search space

- Architecture engineering with CNNs often identifies repeated
motifs consisting of combinations of convolutional filter banks,
nonlinearities and a prudent selection of connections to achieve
state-of-the-art results such as the repeated modules present in
the Inception and ResNet models

Methodology(contd)

- These observations suggest that it may be possible for the
controller RNN to predict a generic convolutional cell expressed
in terms of these motifs. This cell can then be stacked in series
to handle inputs of arbitrary spatial dimensions

- The overall architectures of the convolutional nets are manually
predetermined. They are composed of convolutional cells
repeated many times where each convolutional cell has the
same architecture, but different weights

Methodology(contd)

- The highlight is the design of two convolutional cells to serve
two main functions when taking in a feature map as input:
1. Anormal cell that returns a feature map of the same dimension

2. Areduction cell that returns a feature map where the feature map
height and width is reduced by a factor of two

Methodology(contd)

Softmax

Softmax

ImageNet
Architecture Architecture

Figure 2. Scalable architectures for image classification consist of
two repeated motifs termed Normal Cell and Reduction Cell. This
diagram highlights the model architecture for CIFAR-10 and Ima-
geNet. The choice for the number of times the Normal Cells that
gets stacked between reduction cells, N, can vary in our experi-
ments.

Methodology(contd)

- The structures of the cells can be searched within a search
space. In the search space used, each cell receives as input two
initial hidden states hi and hi-1 which are the outputs of two
cells in the previous two lower layers or the input image. The
controller RNN recursively predicts the rest of the structure of
the convolutional cell, given these two initial hidden states

Methodology(contd)

Step 1. Select a hidden state from h;, h;_1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.
Step 3. Select an operation to apply to the hidden state selected in Step 1.
Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to cofubine the outputs of Step 3 and 4 to create
anew hidden state.

Methodology(contd)

Select one
hidden state

softmax
layer
s

\

Select second [
hidden state | first hidden state
\

\
\

\ \
\ \ \
I g S e
7 7 \ !
- - ~

; repeat B times i
Figure 3. Controller model architecture for recursively constructing one block of a convolutional cell. Each block requires selecting 5
discrete each of which ds to the output of a softmax layer. Example constructed block shown on right. A convolu-
tional cell contains B blocks, hence the controller contains 5B softmax layers for predicting the architecture of a convolutional cell. In our
experiments, the number of blocks B is 5.

\

controller
hidden layer

N/

1

Methodology(contd)

e identity e 1x3 then 3x1 convolution

e 1x7 then 7x1 convolution e 3x3 dilated convolution

e 3x3 average pooling e 3x3 max pooling

e 5x5 max pooling e 7x7 max pooling

e 1x] convolution e 3x3 convolution

. 3XIJ depthwise-separable conv e 5x5 depthwise-seperable conv
e 7x7 depthwise-separable conv

Methodology(contd)

Normal Cell Reduction Cell
Figure 4. Architecture of the best convolutional cells (NASNet-A) with B = 5 blocks identified with CIFAR-10 . The input (white) is the
hidden state from previous activations (or input image). The output (pink) is the result of a concatenation operation across all resulting
branches. Each convolutional cell is the result of B blocks. A single block is corresponds to two primitive operations (yellow) and a
combination operation (green). Note that colors correspond to operations in Figure 3.

Experiments and Results

Experiments and Results

On CIFAR-10, with N = 4 or 6

model | depth #params | error rate (%)
DenseNet (L = 40, k = 12) [26] 40 1.0M 524
DenseNet(L = 100, k = 12) [26] 100 7.0M 4.10
DenseNet (L = 100, k = 24) [26] 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) [26] 190 25.6M 3.46
Shake-Shake 26 2x32d [18] 26 29M 3.55
Shake-Shake 26 2x96d 18] 26 26.2M 2.86
Shake-Shake 26 2x96d + cutout [12] 26y 262M 2.56
NAS v3 [71] 39 7.1M 4.47
NAS v3[71] 39 37.4M 3.65
NASNet-A (6 @ 768) - 3.3M 341
NASNet-A (6 @ 768) + cutout - 3.3M 2.65
NASNet-A (7 @ 2304) - 27.6M 297
NASNet-A (7 @ 2304) + cutout - 27.6M 240
NASNet-B (4 @ 1152) - 2.6M 373
NASNet-C (4 @ 640) - 3.IM 3.59

Table 1. Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10. All results for NASNet are the mean
accuracy across 5 runs.

14

Experiments and Results

On ImageNet

Model image size | # parameters Mult-Adds | Top 1Acc. (%) Top 5 Acc. (%)
Inception V2 [29] 224%224 112M 1.94B 748 922
NASNet-A (5 @ 1538) 299299 109M 235B 78.6 942
Inception V3 [60] 299%299 23.8M 5.72B 788 94.4
Xeeption [9] 299299 228M 838B 79.0 94.5
Inception ResNet V2 [S8] 299x299 55.8M 13.2B 80.1 95.1
NASNet-A (7 @ 1920) 299299 22.6M 4938 80.8 953
ResNeXt-101 (64 x 4d) [68] ~ 320x320 83.6M 315B 809 95.6
PolyNet [69] 331x331 92M 3478 | 813 958
DPN-131 (8] 320%320 79.5M 3208 815 958
SENet [25] 320x320 145.8M 4238 82.7 96.2
NASNet-A (6 @ 4032) 331x331 889M 2388 82.7 96.2

Table 2. Performance of architecture search and other published state-of-the-art models on ImageNet classification. Mult-Adds indicate
the number of composite multiply-accumulate operations for a single image. Note that the composite multiple-accumulate operations are
calculated for the image size reported in the table. Model size for [25] calculated from open-source implementation.

Experiments and Results

85
NASHotA (6 @ 42)
- ad
NASHorA (7 @ 1920 o o
= o sy ® Pormet uenoxtor
= 80 | NasNetA (5 @ 1538) Incepton-ResNet-v2 107
® ResNet-152
s Inosption-3. L]
-
2
8
[A —
&
e—r
g Stoner .
3 ® Sovaner
8 701 "0 meptonut
65
[10000 20000 30000 40000

Figure 5. Accuracy versus computational demand (left) and number of

#Mult-Add operations (millions)

accuracy (precision @1)

85

8

~
a

3
3

NASNotA 6 @ 42)
o
NASHotA @ 1020
0@ 192 g estetos @~ ® Foper e
issoAs 0 1530 80 ® oox01
w ®grerin
Inception3 g
Rt 152
rp—
Naswora s @ 1056
ves s
.

0 20 40 60 8 100 120 140
parameters (milions)

(right) across top published CNN architec-

tures on ImageNet 2012 ILSVRC challenge prediction task. Computational demand is measured in the number of floating-point multiply-
add operations to process a single image. Black circles indicate previously published results and red squares highlight our proposed

models.

16

Conclusion

Conclusion

- Learning scalable, convolutional cells from data that transfer to
multiple image classification tasks. The learned architecture is
quite flexible as it may be scaled in terms of computational cost
and parameters to easily address a variety of problems

- The key insight in the approach is to design a search space that
decouples the complexity of an architecture from the depth of a
network. This resulting search space permits identifying good
architectures on a small dataset (i.e,CIFAR-10) and transferring
the learned architecture to image classifications across a range
of data and computational scales

- Building an architecture on ImageNet is very computationally
intensive with it taking 1800 GPU days (the equivalent of almost
5 years for 1 GPU) to learn the architecture (the team at Google
used 500 GPUs for 4 days

QUESTIONS?

| can SEARCH for answers :-)

	Introduction
	Methodology
	Experiments and Results
	Conclusion

