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Terminology



Density operator

The density operator language provides a convenient means for
describing quantum systems whose state is not completely known.
More precisely, suppose a quantum system is in one of a number of
states |φi 〉, where i is an index, with respective probabilities pi . We
shall call {pi , |φi 〉} an ensemble of pure states. The density
operator for the system is defined by the equation

ρ ≡
∑
i

pi |φi 〉〈φi |



Quantum system evolution

The evolution of a closed quantum system is described by the
unitary operator U. If the system was initially in the state |φi 〉 with
probability pi then after the evolution has occurred the system will
be in the state U|φi 〉 with probability pi . Thus, the evolution of
the density operator is described by the equation

ρ ≡
∑
i

pi |φi 〉〈φi |
U−→

∑
i

piU|φi 〉〈φi |U† ≡ UρU†



Expectation value

In quantum mechanics, the expectation value is the probabilistic
expected value of the result (measurement) of an experiment.
Consider an operator A. The expectation value is then
〈A〉ψ = 〈ψ|A|ψ〉 in Dirac notation with |ψ〉 a normalized state
vector of the quantum system state.
A similar formula holds for the density operator ρ

〈A〉ρ = Tr(ρA) =
∑
i

pi 〈ψi |A|ψi 〉 =
∑
i

pi 〈A〉ψi



Composite systems

The state space of a composite physical system is the tensor
product of the state spaces of the component physical systems.
Moreover, if we have systems numbered 1 through n, and system
number i is prepared in the state |φi 〉 then the joint state of the
total system is

⊗n
k=1 |φi 〉



Algorithm



Input data

QCL framework aims to perform supervised or unsupervised
learning tasks. In supervised learning, an algorithm is provided with
a set of input xi and corresponding teacher data f (xi ). The
algorithm learns to output yi = y(xi , θ) that is close to the teacher
f (xi), by tuning θ. The output and the teacher can be
vector-valued. The objective of learning is to minimize a cost
function, which is a measure of how close the teacher and the
output is, by tuning θ.



QCL algorithm on N qubit circuit

I Encode input data xi into some quantum state |φin(xi )〉 by
applying a unitary input gate U(xi ) to initialized qubits |0〉

II Apply a θ-parameterized unitary U(θ) to the input state and
generate an output state |φout(xi , θ)〉 = U(θ)|φin(xi )〉.

III Measure the expectation values of some chosen observables.
Specifically, we use a subset of Pauli operators
{Bj} ⊂ {I ,X ,Y ,Z}

⊗
N . Using some output function F ,

output yi = y(xi , θ) is defined to be y(xi , θ) ≡ F ({Bj(xi , θ)}).

IV Minimize the cost function L(f (xi ), y(xi , θ)) of the teacher
f (xi ) and the output yi , by tuning the circuit parameters θ
iteratively.

V Evaluate the performance by checking the cost function with
respect to a data set that is taken independently from the
training one.



Ability to approximate a function



Input data are one dimension

Let x and ρin(x) = |ψin(x)〉〈ψin(x)| be an input data and a
corresponding density operator of input state. ρin(x) can be
expanded by a set of Pauli operators {Pj} = {I ,X ,Y ,Z}

⊗
N with

ak(x) as coefficients, ρin(x) =
∑

k akPk . A parameterized unitary
transformation U(θ) acting on ρin(x) creates the output state,
which can also be expanded by {Pk} with bk(x). Now let uij(θ) be
such that bm(x , θ) =

∑
k umk(θ)ak(x). bm is an expectation value

of a Pauli observable itself.



Input data are one dimension

When the teacher f (x) is an analytical function, we can show, at
least in principle, QCL is able to approximate it by considering a
simple case with an input state created by single-qubit rotations.
The tensor product structure of quantum system plays an
important role in this analysis. Let us consider a state of N qubits:
ρin(x) = 1

2N

⊗N
i=1[I + xXi +

√
1− x2Zi ] This state can be

generated for any x ∈ [−1, 1] with single-qubit rotations, namely,∏N
i=1 RY (sin−1x)



Observables

The state given before has higher order terms up to the Nth with
respect to x . Thus an arbitrary unitary transformation on this state
can provide us with an arbitrary N th order polynomial as
expectation values of an observable. Terms like x

√
1− x2 in the

state can enhance its ability to approximate a function.
Important notice in the example given above is that the highest
order term xN is hidden in an observable X

⊗
N . To extract xN

from the state, one needs to transfer the nonlocal observable
X

⊗
N to a single-qubit observable using entangling gate such as

the controlled-NOT gate. Entangling nonlocal operations are the
key ingredients of the nonlinearity of an output.

〈X
⊗

N〉ρin(x) = Tr(ρin(x)X
⊗

N) = xN



Multi-dimensional inputs

The above argument can readily be generalized to
multi-dimensional inputs. Assume that we are given with
d-dimensional data x = x1, x2, . . . , xd and want higher terms up to
the nkth (k = 1, . . . , d) for each data, then encode this data into a
N =

∑
k nk -qubit quantum state as

ρin(x) = 1
2N

⊗N
k=1(

⊗nk
i=1[I + xXi +

√
1− x2Zi ]) These input states

automatically has an exponentially large number of independent
functions as coefficient set to the number of qubits. The tensor
product structure of quantum system readily “calculates” the
product such as x1x2.



Optimization procedure



Gradiente calculation

To calculate a gradient of an expectation value of an observable
with respect to a circuit parameter θ, suppose the unitary U(θ)
consists of a chain of unitary transformations

∏
j=1 Uj(θj) on a

state ρin and we measure an observable B. For convenience, we
use notation Uj :k = Uj . . .Uk . Then 〈B(θ)〉 is given as
〈B(θ)〉 = Tr(BUl :1ρinUl :1). We assume Uj generated by a Pauli
product Pj , that is, Uj(θj) = exp(−iθjPj/2). The gradient is
calculated to be

∂〈B(θ)〉
∂θj

= 1
2Tr [BUl :j+1Uj(

π
2 )ρjU

†
j (π2 )U†l :j+1]−

1
2Tr [BUl :j+1Uj(−π

2 )ρjU
†
j (−π2 )U†l :j+1]

(1)

where ρj = Uj :1ρinU
†
j :1



Numerical simulations



Classification proble

As a demonstration, the classification problem, which is an
important family of tasks in machine learning, is performed.



Figure

Figure: Demonstration of a simple nonlinear classification task. (a)
teacher data. Data points that belong to class 0, 1 is shown as blue and
red dot, respectively. (b) Optimized output from first qubit (after
softmax transformation). 0.5 is the threshold for classification, less than
and greater than 0.5 means that the point is classified as class 0 and 1,
respectively.



Results

The figure shows the training data set, blue and red points indicate
class 0 and 1 respectively. Here we train the quantum circuit to
classify based on each training input data points xi = (xi ,0, xi ,1).
We define the teacher f (xi ) for each input xi to be two dimensional
vector (1, 0) for class 0, and (0, 1) for class 1. The number of
teacher samples is 200 (100 for class 0, and 100 for class 1).
We see that QCL works as well for the nonlinear classification
tasks.



Approach

The output is taken from the expectation value of the Pauli Z
operator of the first 2 qubits, and they are transformed by softmax
function F . For d-dimensional vector q, softmax function returns
d-dimensional vector F (q) with its kth element being
Fk(q) = eqk/

∑
i e

qi . Thus the output yi = (yi ,0, yi ,1) is defined by
yi = F (〈Z1(xi , θi )〉, 〈Z2(xi , θi )〉)



Conclusion



Conclusion

A machine learning framework on near-term realizable quantum
computers was presented. Given method fully employs the
exponentially large space of the quantum system, in a way that it
mixes simply injected nonlinear functions with a low-depth circuit
to approximate a complex nonlinear function. Numerical results
have shown the ability to represent a function, to classify, and to
fit a relatively large quantum system. Also, the theoretical
investigation has shown QCL’s ability to provide us a means to
deal with high dimensional regression or classification tasks, which
has been unpractical on classical computers.
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