
Human Level Control Through Deep
Reinforcement Learning

Volodymyr Mnih, Koray Kavukcuoglu, David Silver

Presented By
Kaivalya Anand Pandey

Novosibirsk State University

March 23, 2020

Introduction

I The theory of reinforcement learning provides a normative
account, deeply rooted in psychological and neuroscientific
perspectives on animal behaviour, of how agents may optimize
their control of an environment.

I To use reinforcement learning successfully in situations
approaching real-world complexity, however, agents are
confronted with a difficult task: they must derive efficient
representations of the environment from high-dimensional
sensory inputs, and use these to generalize past experience to
new situations.

I Remarkably, humans and other animals seem to solve this
problem through a harmonious combination of reinforcement
learning and hierarchical sensory processing systems.

I While reinforcement learning agents have achieved some
successes in a variety of domains, their applicability has
previously been limited to domains in which useful features
can be handcrafted, or to domains with fully observed,
low-dimensional state spaces.

I Recent advances in training deep neural networks9–11 to
develop a novel artificial agent, termed a deep Q-network, that
can learn successful policies directly from high-dimensional
sensory inputs using end-to-end reinforcement learning.

I Testing Platform - Atari 2600 Games.

Deep Q Network Agent

I Receiving only pixels and the game score as inputs, was bale
to surpass the performance of all previous algorithms and
achieve a level as compared to that of professional human
game tester across a set of 49 games.

I This work bridges the divide between high-dimensional sensory
inputs and actions, resulting in the first artificial agent that is
capable of learning to excel at a diverse array of challenging
tasks.

I Goal is to create a single algorithm that would be able to
develop a wide range of competencies on a varied range of
challenging tasks,a central goal of general artificial
intelligence.

Deep Q Network Agent

I To achieve this, we developed a novel agent, a deep
Q-network (DQN), which is able to combine reinforcement
learning with a class of artificial neural network known as deep
neural networks.

I Notably, recent advances in deep neural networks, in which
several layers of nodes are used to build up progressively more
abstract representations of the data, have made it possible for
artificial neural networks to learn concepts such as object
categories directly from raw sensory data.

I We use one particularly successful architecture, the deep
convolutional network,which uses hierarchical layers of tiled
convolutional filters to mimic the effects of receptive fields,
thereby exploiting the local spatial correlations present in
images, and building in robustness to natural transformations
such as changes of viewpoint or scale.

I We use deep convolutional neural network to approximate the
optimal action value-function.

Q∗(s, a) = maxE [rt+γ∗rt+1+γ∗γ∗rt+2+....|st = s, at = a, π]
(1)

which is maximum sum of rewards rtdiscountedbyγ at each time
step t, achievable by a behaviour policy π = P(a|s), after making
an observation (s) and actions (a).

I We address these instabilities with a novel variant of
Q-learning which uses two key ideas. Firstly, we used a
biologically inspired mechanism termed as experience replay
that randomises the data meaning removing correlations in the
observation sequence. Secondly, we used an iterative update
that adjusts the action values(Q) towards target values that
are periodically updated, thereby reducing correlations.

I The Q-learning update at iteration i uses the following loss
function :

Li (Θi) = E(s, a, r , s
′) U(D)[(r + γmaxQ(s ′, a′,Θ‘

i)− Q(s, a,Θi))2]
(2)

I To evaluate our DQN agent, we use Atari 2600 games
platform whcih offers a diverse array of tasks (n=49).

Methods

I Preprocessing - Working directly with raw Atari 2600 frames
which are 210 X 160 pixel images with 128 color palette, can
be demanding in terms of memory and computation. We
apply a basic preprocessing step aimed at reducing the input
dimensionality and dealing with some artefacts of Atari 2600
emulator.

I First to encode a single frame we take maximum value for
each for each pixel color value over the being frame encoded
and the previous frame. This was necessary to remove
flickering in games as some objects only appear in even frames
while some in only odd frames.

I Second then we extract the Y-channel, also known as
luminance, from the RGB frame and rescale it to 84 X 84.

Methods

I Code Availability - The source code can be accessed at
https://sites.google.com/a/deepmind.com/dqn.

I Model Architecture - The input to neural networks consists of
84X84 X4 image produced by preprocessing. The first hidden
layer convolves 32 filters of 8X8 with stride 4 with the input
image and applies a rectifier nonlinearity. The second hidden
layer convolves 64 filters of 3X3 with stride 1 follows by a
rectifer. The final hidden layer is fully connected and consists
of 512 rectifier units. The output layer is fully connected
linear layer with a single output for each valid action. The
number of valid actions varied between 4 to 18 on the games
we considered.

I Training Details - RMS Prop algorith with mini batch size of
32. The behaviour policy was from 1.0 to 0.1 over the first
million frames and was fixed at 0.1 after. We trained over a
50 million frames and used a replay memory of over 1 million
most recent frames.

Evaluation Procedure

I The trained agents were evaluated by playing each game 30
times for up to 5 minutes each time with different initial
random conditions.

I This procedure is adopted to minimise the possibility of
overfitting during evaluation. The random agent served as a
baseline comparison and chose a random action at 10Hz
which is every sixth frame, repeating its last action on
intervening frames.

I 10 Hz is the fastest a human can select the ’fire’ button, and
setting the random agent to this frequency avoids spurious
baseline of scores in a handful of the games.

Algorithm

I At each time-step the agent selects an action at from the set
of legal game actions, A= 1, . . . ,K . The action is passed to
the emulator and modifies its internal state and the game
score. In general the environment may be stochastic.

I The emulator’s internal state is not observed by agent, instead
agent observe an imagextεR

d which is a vector pixels
representing current screen.

I In addition it receives a reward rt representing the change in
game score. Note that in general the game score may depend
on the whole previous sequence of actions and observations;
feedback about an action may only be received after many
thousands of time-steps have elapsed.

Algorithm

I Because the agent observes the current screen, the task is
partially observed and many emulators state are perceptually
aliased.

I Therefore the sequences of actions and observations,
st = x1, a1, x2,, at − 1, xt are input to algorithm, which
then learns game strategies, depending upon the sequences.

I All sequences in the emulator are assumed to terminate in a
finite number of time- steps. This formalism gives rise to a
large but finite Markov decision process (MDP) in which each
sequence is a distinct state. As a result, we can apply
standard rein- forcement learning methods for MDPs, simply
by using the complete sequence.

2-D t-SNE embedding of last layer assign by DQN

Results

Results

