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Introduction
The modelling of turbulent flows in fluids is useful for many applications such 
as aeronautics, energy generation system, weather forecasting, etc.
The use of Computational Fluid Dynamics (CFD) can give us more detailed 
insight on turbulent flows, the Large Eddy Simulation (LES) and Direct 
Numerical Simulation (DNS) techniques provide high fidelity data however 
they are very time intensive and they generate extremely high dimensional 
large datasets making it hard to efficiently handle and analyse.

Techniques for modelling turbulent flows with high fidelity while minimizing the computation and storage 
costs associated with LES/DNS are of active research. Such models in low dimensional space are 
referred to Reduced Order Models (ROM), they have two primary objectives:

a) The ability to model the key dynamics/coherent features of the turbulent flow
b) Provide an efficient mean of data compression for LES/DNS datasets.

ROM for engineering application has been a major research topic for a few decades. Its goal is to 
model key physic features of a flow-field without computing full Navier-Stokes (NS) equations; this is 
done by extracting a low dimensional subspace typically using Proper Orthogonal Decomposition (POD 
aka PCA).
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Once the ROM is done, the next step is to use this reduced basis for 
modelling the flow at future time instants, a highly popular technique being the 
Galerkin Projection (GP) approach.

The GP method consist in the use of spatio-temporal dynamics captured by 
the reduced basis and then evolve them in time instead of computing the NS 
equations. Such approach ensures us cheaper computation.

However GP models may be unstable under different conditions, this problem leading to the focus on 
Galerkin-free alternatives.

This paper explores a non-Galerkin projection based approach to ROM through deep learning. The 
focus is on exploiting Neural Networks (NN) to “learn” the key dynamics of turbulent flows from high-
fidelity simulation databases and use them to generates ROMs to model the flow field at future instants, 
for flow control applications.
For this, Recurrent NNs (RNN) will be used considering there efficiency for modelling sequential data 
and more precisely the popular Long Short-Term Memory (LSTM) variant that accounts for memory 
since data obtained from turbulent flows may exhibit memory effects which have to be accommodated 
for accurate predictive models.
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Long Short-Term Memory Neural Networks

The goal of predicting the evolution of a flow-field through its POD temporal 
coefficients is a sequence modelling problem in machine learning that requires 
to preserve an order on the observations, hence the use of RNNs.
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The LSTM variant overcomes some memory problems (like the Vanishing Gradient one), it also learn 
and harness temporal dependence from the data, and moreover it also utilize internal memory:

Predictions are conditional to the recent context in the input sequence, not just what has been 
presented as the current input in the network, e.g. can be shown one observation at a time and learn 
what observation it has seen previously are relevant and how they can be used to make a prediction.



March 2020 6 / 32

Introduction
Long Short-Term 
Memory Neural 
Networks
Methodology
Results
Memory Effects and 
LSTM Model Accuracy
Conclusion

I
II

III
IV
V

VI

The LSTM cell usually contains three gates: input, output, and forget; these 
gates allow the LSTM to control the flow of training information by respectively 
adding, letting through the next cell, or removing information.

These gates are denoted: i, o, f; the cell state is denoted C; and the cell input 
and output are denoted: x, h.

Text 2
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The equations to compute the gates and states of the cell are:

W are the weights for each gates and C-tilde is the updated cell state. The states are propagated 
ahead through the network (cf. fig. 1) and weights are updates by back propagation through time.
The forget gates prevent over-fitting.
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The paper explores two types of LSTMs:

a) The traditional LSTM algorithm by Hochreiter
b) The bidirectional LSTM (BiLSTM) by Graves et al.

In the classic LSTM each cell has an input dependent on the cell at the 
previous time instant.

On the other hand the 
BiLSTM has a two way flow 
of information, the sequence 
is therefore trained using by 
two LSTM networks, one in 
each direction.

These two networks are 
connected to the same output 
layer.
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Methodology

For a NN to learn it needs data, therefore two DNS databases from Johns 
Hopkins turbulence database (JHTB) will be used since it is a canonical case:
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    a) Force Isotropic Turbulence dataset (ISO)
        Sourced from 3-D DNS Navier-Stokes simulations solved using spectral method on a grid size of
        10243 with 5023 time steps for 10 seconds of high-fidelity flow data (~ every 2 ms).

    b) Magnetohydrodynamic Turbulence dataset (MHD)
        Sourced from a 3-D DNS Navier-Stokes simulation solved on a grid size of 10243 with 1024
        time steps for 2.056 seconds of high-fidelity flow data (~ every 2 ms).

Considering the high computational cost of a 3-D DNS,the JHTB provides these datasets for only one 
single Reynolds number, whereas a DL approach would preferably require multiple closely related 
datasets.
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To palliate this problem, the 3-D ISO dataset is decomposed into 2-D planes of 
the same size, we then choose a subset of size N of these 2-D planes with 
their associated snapshots (k=5023 for ISO, k=1024 for MHD) or a smaller 
subset.

Such process enable to 
create a large number of 
unique training datasets – 
for more info refer to 
paper page 5.
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An advantage of well designed NNs models is that they account for the 
dissimilarities in various training datasets extracting only the key features of 
the data which tend to be universal, it will be shown in later results. A classic 
strategy consists in using dominant POD modes to represent the key features 
of the flow since they usually capture most of the flow energy.

Moreover the evolution in time of the POD modes is given by their temporal 
coefficients that can be used to describe temporal evolution of the key 
features, denoted as f in the following equation:

ɸi – a POD mode for the snapshot i
α(t)i – the vector of time coefficient for ɸi
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ROMs can then be built by predicting α(t)i at future time instant for dominant 
POD modes, using techniques such as GP.

This is extremely time efficient for DNS/LES data since it only models the time 
evolution of a few important flow structures.



March 2020 13 / 32

Introduction
Long Short-Term 
Memory Neural 
Networks
Methodology
Results
Memory Effects and 
LSTM Model Accuracy
Conclusion

I
II

III
IV
V

VI

In the following, the existing ROM framework will be retained but LSTM  NNs 
will be explored to model α(t)i instead of GP. The key steps in the LSTM-ROM 
methodology are:

1. Select the number of 2-D planes to be used as training datasets.

2. From the 2-D planes select a test dataset.

3. Extract dominant POD modes (usually 5 to 10 modes with highest eigenvalues) and their α(t)i for
    each of the training datasets and test dataset; the α(t)i of the test dataset POD modes will be used to
    validate the LSTM-ROM prediction.
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4. Train LSTM/BiLSTM NN for the dominant POD modes chosen previously.

5. Validation: using a short history of the dataset POD mode α(t)i as input,
    predict the next few time instants α(t+t’)i and compare the prediction with
    the true α(t+t’)i from the test dataset. Repeat this for all chosen dominant
    POD modes.

6. Using POD modes and
    the DL-ROM predicted
    temporal coefficients,
    compute predicted flow
    field using eq. 7.
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For details on the LSTM implementation software framework and training 
parameters refer to the appendix in the paper.

In the paper, the POD modes and temporal coefficients from five 2-D planes 
which are equidistant from each other are used as the training data; and the 
test dataset consist of a single 2-D plane also equidistant, whose POD 
temporal coefficient are modelled using the LSTM NN.

It is often assumed that in ROMs, including 
Galerkin-based ones, the dominant POD 
modes for the training and test datasets are 
qualitatively similar: 

e.g. flows with a narrow range of Reynolds 
number can show qualitative (but not 
quantitative) similar behavior which are 
encoded in their dominant POD modes.
For the ISO training and test 2-D planes 
used here.
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We can observe significant qualitative similarity due to the data-driven nature 
of the technique used and use them to model the behavior of an unseen 
dataset of the same family.

The training strategy consists in decomposing the training α(t)i signals from all 
the datasets into several short samples by a moving window. These samples 
are divided into an input part and its corresponding output part.

The LSTM NN is then trained using 
a set of input and output signal, the 
training problem consist now in 
learning signatures in 1-D signals of 
the training datasets and predict a 
1-D signal from a test dataset.
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Results

Time window/prediction horizon choices have to be made at the NN design 
level before training as they can significantly affect the accuracy of the model; 
to do so, some trial and error based on the physics of the flow are made.
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The presented results have been generated with a time window and predictive horizon of 10 time steps 
each. Performance with longer windows/horizons will be studied as well.

In a first part the results on ISO are presented, then in a second part the results on MHD.
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Isotropic Turbulence

The LSTM and BiLSTM NNs are trained on each of the 5 dominant POD 
temporal coefficients therefore obtaining 5 trained models – meaning if the 
ROM is built using dominant m modes, m models would be required.
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To evaluate the prediction, an input of any sample from the temporal 
coefficients of the relevant mode from the test dataset is provided, the NN 
model then predict the sample which follows immediately after it. Having 
thousands of samples to test for a given mode the findings are statistically 
significant.

Figure 10 shows the prediction 
results at a randomly chosen 
sample, we notice that surprisingly 
the BiLSTM architecture is less 
accurate than the LSTM one.
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To evaluate the accuracy of these NN architectures the Mean Absolute Scaled 
Error (MASE) metric is chosen to quantify the deviation of prediction trend and 
calculated over a large number of sample. In figure 11 and 12 the average of 
MASE for each mode is displayed for LSTM and BiLSTM respectively.

This counter intuitive results may be explained by the fact that 
BiLSTM has been shown to improve performance for long 
range statistical correlation, however that is unlikely present 
(even though it may happen) for signals generated from highly 
chaotic, non-linear dynamical systems like turbulence.

BiLSTM NNs are likely to over-fit the data.

We can see that the MASE is 
generally low and its average 
for each mode is higher for 
BiLSTM.
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Using the predicted temporal coefficients, the future time evolution of the flow 
is computed through equation 7.

The comparison of the expected flow field and the predicted one is shown 
below.

Dominant modes comprise a 
significant amount of flow energy, 
therefore prediction errors in 
lower modes (such as 4 and 5) 
tend to less negatively impact the 
flow field accuracy – than 
prediction errors in modes1 and 
2.
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Magnetohydrodynamic Turbulence

The previous section required m models to be trained (one for each POD 
mode), a multiple model approach, this requires more memories for 
embedding NN models on the onboard electronic, being therefore impractical. 
Another issue is that a POD is a linear combination of eigenvectors and 
eigenvalues, which do not explicitly account for inter-modal, non-linear 
interaction seen in turbulence.

Here an alternative strategy will be 
proposed to account for these 
issues, the unified model approach. 
This approach consist in training 
one NN with samples from all m 
chosen modes, from all training 
datasets.
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The LSTM and BiLSTM NNs are trained as before but using the unified model. 
The results at a randomly chosen sample are shown below. We can see a 
generally good performance, the unified model may learn statistics common 
among different POD modes, thus boosting performance.
Moreover, we can once again see that the BiLSTM under-performs the LSTM 
predictions.
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The MASE is plotted as well.
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Memory Effects and LSTM Model Accuracy

The focus of LSTM is to model sequential data by extracting the correlations 
between subsequent realizations – LSTM assumes that there is memory in the 
sequence. However, signals from chaotic dynamical systems tend to have 
very short correlated events and memory does not persist over a long time.
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Now, is it possible to evaluate the suitability of LSTM by quantifying “memory” in a sequential dataset?

A prominent solution is the Hurst exponent, it is a quantitative estimate of the presence or absence of 
long-term trends in a sequential one-dimensional signal such as time series; it has been used 
extensively in hydrology, finance, climate sciences, etc. It is derived from rescaled-range analysis 
which is measure of how variable a time series is for different lengths, using the ratio of its range and 
the standard deviation.
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The Hurst exponent is expressed as k tend to infinity by:

R(k) – the range of the first k values in the series.

S(k) – the corresponding standard deviation.

E – the expected value the ratio with k being the number of data points in the series being currently 
       Processed.

C – a constant.

H – the Hurst exponent, it lies between 0 and 1.
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If H tend to 0, then an increase will most likely be followed by a decrease.

If H tend to 1, then an increase will most likely be followed by an another increase.

If H = 0.5, then it indicates a purely random behavior, and if H ≈ 0.5 it means that there is a lack of 
memory.
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Since the LSTM architecture has the assumption of memory intrinsically built 
into its algorithm, the LSTM-ROM accuracy is greatly influenced by the 
interplay between persistence and horizon – respectively the behavior of a 
sequential series described by the Hurst exponent, and the number of steps 
ahead we want the model to predict.

To study the influence of the persistence on the accuracy of the prediction horizon, the ISO and MHD 
datasets are used once again with the LSTM-ROM methodology.

1. H is estimated for the α(t) of all the POD modes with non-negligible eigenvalue from the dataset.

2. Modes are chosen accordingly to different H regimes, i.e. persistent, random, and anti-persistent.

3. LSTM models are developed for each of these modes, for a given horizon length.
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In the following tables are displayed the accuracy of the predicted model 
through the mean MASE with additionally the percentage change in the mean 
MASE. First table is for the ISO dataset and the second one is for the MHD 
dataset.

For the ISO dataset we notice that for low 
POD mode rank – and relatively high Hurst 
exponent – the accuracy is low for short 
horizon lengths but jumps rapidly for longer 
horizon lengths.

However for high POD mode rank – and 
medium Hurst exponent – the accuracy is 
quite stable with greater horizon lengths.
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For the MHD dataset we observe similar results for low POD mode rank but 
for the high ones, contrary to the ISO dataset, the prediction is extremely poor 
regardless of the length of horizon – this being most likely linked to the low 
Hurst exponent and therefore highly anti-persistent model.
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Out of these results a few observations are made about the LSTM behavior:

a) Strongly persistent behavior -- shown by low rank modes – tend to be
    modelled accurately for short horizon.
b) Strongly anti-persistent behavior tend to be modelled poorly regardless of
    horizon.

c) For any given mode, increase in horizon tends to reduce accuracy -- being less pronounced for
    strongly anti-persistent modes.
d) For weakly persistent modes, i.e. H ≈ 0.5, there may be some improvement in accuracy with
    increase in horizon.

We notice that highly persistent modes tend to be low rank, containing more energy; likewise, weakly-
persistent and anti-persistent modes tend to have low energy. Therefore for short horizons accurate 
modelling of the high energy modes leads to accurate ROMs, even though at longer horizon their 
prediction are poor.
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Conclusion

ROMs for turbulent flows using the LSTM NN have shown great potential to 
model complex sequential data in multiple domain. From the paper is drawn 
the conclusion that using the BiLSTM consistently performed worse than the 
LSTM despite its theoretical formulation intending otherwise, this being likely 
due to over-fitting data by assuming long range memory.
Better tuning of the hyper parameter could lead to further improvement 
however it is thought that they would be marginal and the qualitative trends 
would hold.
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The implicit assumption that has been made is that the dominant POD spatial modes are consistent 
within the same regime. This generally holds for simplified flow fields and geometries, at relatively close 
related Reynolds numbers, but can be extremely restrictive otherwise.

The effort made in this paper was to demonstrate the capability of LSTMs in modelling non-stationary 
signals from high-fidelity turbulence. Such LSTM-ROM would be suitable for flow control applications 
with a narrow class of regimes and a 'physics' insight into the flow is not a necessity, moreover the low 
computational cost of the trained LSTM-ROMs for inference is convenient for resource-scarce on-board 
control hardware.
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