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Introduction

Why would we want to use Tensor Networks 7
e Training the model scales only linearly in the training set size
e It makes the training adaptive

e Additional type of regularization that could have interesting
consequences for generalization

Here we will only use the MPS (Matrix Product State) tensor network :
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Figure 1: MPS decomposition, also known as a tensor train. (Lines represent
tensor indices and connecting two lines implies summation
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Input Data Encoding

Tensor Networks in physics

Tensor networks in physics are typically used in a context where
combining N independent systems corresponds to taking a tensor
product of a vector describing each system

To apply similar tensor networks to machine learning, we choose a
feature map of the form :

pALEITEN () = @™ (2 ) @ @ [Z2) @ - @V [z ) .

j=12..N

sj run from 1 to d

d is the local dimension (hyper-parameter) defining the classification
model
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Input Data Encoding

Here we will only consider the case of homogeneous inputs with the
same local map applied to each x;

Therefor ®(z) can be viewed as a vector in a d”-dimensional space or
as an order-N tensor :
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Figure 2: Input data is mapped to a normalized order N tensor with a rank-1
product structure
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Classification Model

To classify data with pre-assigned hidden labels :
@ ”"One-versus-all” strategy
e Optimizing a set of functions indexed by a label [

o Classifying an input x by choosing the label I for which | f!(x)| is
largest.

Using :

fiix) = W* - @(x)
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Classification Model

We can view W' as an order N + 1 tensor where [ is a tensor index and
f!(x) is a function mapping inputs to the space of labels :

;
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Figure 3: The overlap of the weight tensor W' with a specific input vector (x)
defines the decision function f!(z)

Richard Fambon (EISTI Pau) Supervised Learning with TN April 9, 2020 7/17



Classification Model

Therefor we can represent W' as an MPS :

Figure 4: Approximation of the weight tensor W' by a matrix product state.
The label index [ is placed arbitrarily on one of the N tensors but can be
moved to other locations

W' has the form :
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“Sweeping” Optimization Algorithm

We want to optimize the quadratic cost :
C =5 T nly ol (xn) = y)?

n runs over the Np training inputs
y! is the vector of desired outputs for input n

@ One-hot encoding :
If the correct label of z,, is L,, then y/» =1 and !, for all other
labels [
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Tensor Improving

For exemple, we want to improve tensors at sites 7 and 5 + 1
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Figure 5: (a) forming the bond tensor;

(b) projecting a training input into the “MPS basis” at bond j;
(c¢) computing the decision function in terms of a projected input;
(d) the gradient correction to B!
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Tensor Improving

Having obtained our improved B‘ , we must decompose it back into
separate MPS tensors to maintain efficiency and apply our algorithm
to the next bond using SVD (Singular Value Decomposition):
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Figure 6: (a) Restoration of MPS form

(b) advancing a projected training input before optimizing the tensors at the
next bond. In diagram (a), if the label index [ was on the site j tensor before
forming B! , then the operation shown moves the label to site j + 1.

i

Richard Fambon (EISTI Pau) Supervised Learning with TN April 9, 2020 11 /17



Tensor Improving

The current decision function can be efficiently computed from this
projected input ®,and the current bond tensor B’ as :
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And the gradient update to the tensor B! can be computed as :

ol 1
; £ _ LA of 4 T
AB == Zlmﬂ i),
And the SVD of B! is given by :
H;t.,#_.iflrt,q _ E [ :t:.l I.L.;}.-:. -L':f.,_l'l.ﬂ +1
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Results and Discussion

The scaling of the above algorithm is d®m3N Ny Ny with :
m the recall which is the typical MPS bond dimension

N the number of components of input vectors x

N the number of labels

N7 the size of the training data set

The algorithm scales linearly in the training set size, when typical
kernel-trick methods typically scale at least as N%
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Results and Discussion

When using the algorithm on a slightly modified MNIST Handwritten
Digit Test, it quickly converges after 5 or less ” sweeps”

The test error rates also decreases rapidly with the maximum MPS
bond dimension m :

o m=10=> 5%
o m =20=>2%
o m=120=> 0.97%

Important note : MPS bond dimensions in physics applications can
reach many hundreds or even thousands

Richard Fambon (EISTI Pau) Supervised Learning with TN April 9, 2020 14 /17



Results and Discussion

The algorithm also induces an implicit feature selection during the SVD
and we can contract the MPS at will without losing too much accuracy:

Figure 7: (a) Decomposition of W' as an MPS with a central tensor and
orthogonal site tensors.

(b) Orthogonality conditions for U and V type site tensors.

(c¢) Transformation defining a reduced feature map ®(x)
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Results and Discussion

There is still room for improvement :
e Try other tensor networks (PEPS, MERA, ...)
e Mini-batches, momentum or adaptative learning rates

e Include standard regularizations of parameters (weight decay or
L1 penalties)

Richard Fambon (EISTI Pau) Supervised Learning with TN April 9, 2020 16 /17



End of the presentation

Thank you for your attention !

Any questions ?

Paper link : http://papers.nips.cc/paper/6211-supervised-learning-
with-tensor-networks.pdf
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