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Introduction

Tensor networks have been a useful tool for physicists for many years, but
more recently they have been applied to a wide spread of problems in
machine learning:

Classification

Analyzing Representation power of Neural networks

Model Compression etc

William Huggins, Piyush Patil , K. Birgitta Whalley, M. Stoudenmire (NSU)Tensor Networks April 30, 2020 3 / 38



Proposed Method

The authors:

Propose quantum algorithm that implement both discriminative and
generative machine learning tasks

Used circuits equivalent to tensor networks specifically

Tree tensor Networks

Matrix Product States (MPS)

Approach is conceptually related to quantum variational
eigensolver
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Motivation

Is there a subset of quantum circuits which are especially natural or
advantageous for machine learning tasks?
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Motivation

Tensor network circuits might provide a compelling answer for three main
reasons:

Implemented on small near-term quantum devices for input and
output dimensions greater than the number of physical qubits.

Gradual crossover from classical tensor network circuits to circuits
that require quantum computers.

Rich theoretical understanding of the properties of tensor networks.
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Tensor Networks

Tensor Networks allow us to approximate a high order tensor using a
collection of lower order tensors and a prescription for contracting them.
Rather than writing out a summation over a collection of different

variables and indices, we use graphical notation.
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Graphical Notation of Tensor Networks

(a) A vector (b) A matrix
(c) Dot product

(d) Matrix product

Figure: Notation for tensor networks
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Learning with Tensor Networks Quantum Circuits

Tree and MPS tensors can always be realized by a quantum circuit.

Fig 2: quantum state of N qubits of tree tensor network(left) = quantum circuit acting

on N qubits(right) ≡ D = bond dimension, V = no. of qubits |D = 2V

Quantum tensor networks are carefully designed with classical
computers in mind.

Tree and MPS tensor can capture wide range of states to produce
powerful machine learning models.
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A. Discriminative Algorithm

Goal: Given some pieces of data ~x ∈ Rn and their associated labels
l ∈ {1 . . . k}, learn a function that maps from the data to the labels:

f : Rn → {1 . . . k}

We could use a linear classifier for this task but they are not flexible
enough.
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A. Discriminative Algorithm

The input vector ~x = (x1, x2, . . . xN), be normalized s.t. xi ∈ [0, 1]. Map
vector x ∈ RN to a product state by the feature map:

The state can be prepared by starting from computational basis |0〉
⊗

N ,
then apply a single qubit unitary to each qubit n = 1, 2, . . . N.

William Huggins, Piyush Patil , K. Birgitta Whalley, M. Stoudenmire (NSU)Tensor Networks April 30, 2020 11 / 38



A. Discriminative Algorithm

The model proposed:

Is an iterative procedure that parameterizes a CPTP - completely
positive trace preserving map from N-qubit input space to a small no
of output qubits that encodes different possible class labels.

William Huggins, Piyush Patil , K. Birgitta Whalley, M. Stoudenmire (NSU)Tensor Networks April 30, 2020 12 / 38



A. Discriminative Algorithm

The circuit takes the form of a tree, with V qubit lines connecting
each subtree to the rest of the circuit.

A larger V can capture a larger set of functions, just as a tensor
network with large bond dimension can parametrize any N-index
tensor.
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A. Discriminative Algorithm

Fig 3: Discriminative tree tensor network model architecture for V = 2 qubits connect different

subtrees (a) quantum circuit (b) tensor network diagram
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A. Disciminative Algorithm

Fig 4: The connectivity of nodes of the tree network model if it was applied to 4x4 image
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A. Discriminative Algorithm

Fig 5: Using quantum we could add additional unitary element to the circuit to address the

shortcomings of correlation
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A. Discriminative Algorithm

An MPS model can be viewed as maximally unbalanced tree.

The difference is for each unitary operation on 2V inputs, only one set
of V qubits are passed to the next node

Fig 6: Discriminative tensor network model for MPS architecture with V = 2
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B. Generative Algorithm

The generative algorithm proposed:

Is nearly the reverse of the discriminative algorithm.

produces random samples by first measuring it in the computational
basis.

puts them in a family of the ”Born Machines”
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B. Generative Algorithm

The goal of generative is to generate samples from a probability
distribution inferred from the data set.

Begins by preparing 2V qubits in basis state 〈0|
⊗

2V and entangles
them by unitary operations

Another set of 2V qubits are prepared and half are entangled with the
first V entangled qubits and half with the second V entangled qubits.

Two more unitary operations are applied to each new grouping of 2V
qubits.

The output are split into four groups and the process repeats for each
group.

The process ends when the total number of outputs = size of output
one want to generate.
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B. Generative Algorithm

Fig 7: Generative tree tensor network model architecture for V = 2 connecting each subtree
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B. Generative Algorithm

Fig 7: Generative MPS tensor network model architecture for V = 2 connecting each unitary
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Model Architecture

For illustration: the model shown is with 16 inputs and 4 layers but actual
experiment, model had 64 inputs and 6 layers

Fig 8 Model architecture used in experiment - special case of discriminative tree tensor
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Loss Function

Let:

∧ be the model parameters

d be an element of the training dataset

pι(∧, x) be probability of model to output ι

ιx be the correct label for input x

be the probability of
incorrect output
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Loss Function
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Optimization

We want our model to generalize well to unobserved inputs,

we optimize the loss function over subset of the training data.

we use a stochastic estimate of the true training loss given by:

and use a variant of the simulataneous perturbation stochastic

approximation (SPSA)
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Optimization Algorithm

λ
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Results

Circuit was trained single output qubit to recognize grayscale images of
size 8x8. The images were obtained from the MNIST dataset.

Fig 9: Test accuracy as a function of the number of epochs for 0’s and 7’s
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Results

Fig 10. Test accuracy for each of the pairwise classifiers
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Results

The networks was trained with the choices λ = .234, η = 5.59, a = 28.0,
A = 74.1, s = 4.13,t = .658,γ = 0.882, n = 222 and achieved accuracy
above 95%
It was observed that different choices of the hyper-parameters could
significantly affect which pairs were classified accurately.
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Implementation on Near-Term Quantum Devices

Advantage of using tree or matrix product tensor network is they
could be implemented using a very small number of physical qubits.

The key requirement is the hardware must allow measurement of
individual qubits without further disturbing the state of the others

This is also key for certain approaches to quantum error correction.
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A. Qubit Efficient Tree Network Models

Fig 11: Qubit efficient scheme for (a) discriminative (b) generative tree models with V = 2 and

N = 16 input or output
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A. Qubit-Efficient Tree Network Models

In the discriminative case (a) number of physical qubits needed is can
be significantly reduced to Q(N,V ) = V log(2N/V ) for what would
have required N physical qubits.

For the generative case, generating (b) it is the same as the
discriminative case.

Note

The expressivity of tensor network model is measured by the bond
dimension D = 2V .

The model used scales the bond dimension to Q(N,D) log(D) log(N)

The SOTA for classical tensor network is D = 215 or 30000

So for only V = 16, we could quickly exceed the power of any
classical tensor network.
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B. Qubit-Efficient Matrix Product Models

Fig 12: Qubit efficient scheme for evaluating (a) discriminative and (b) generative MPS for V =

3 qubits connecting the nodes of the network
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B. Qubit-Efficient Matrix Product Models

For an arbitrary number of qubits, you will require V + 1 physical
qubits when using MPS in discriminative or generative case.
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C. Noise Resilience

Fig 13: Test Accuracy for each pairwise classifier under noise
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C. Noise Resilience

we chose different hyper-parameters for training under noise

the accuracy is comparable to the training without noise - only slight
reduction
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Conclusion and Discussion

Most of the features that make tensor networks appealing for classical
algorithms also make them a promising framework for quantum
computing.

Tensor networks strike a careful balance between expressive power and
computational efficiency, thus can be useful for quantum circuits

Based on rich theoretical understanding of their properties and
powerful algorithms for optimizing them, they can provide interesting
avenues for quantum machine learning research.
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The End
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