
XGBoost: A Scalable Tree Boosting System

Daniil Fishman

Novosibirsk State University

23.04.2020



What is xgboost?

I Algorithm
I Optimization technique
I Method of ensemble
I Library



What is xgboost? Library

I 90 000+ lines of C++ code.
I API for R, Python, Java, Scala
I Multithred and multinode versions

Why is it so fast?
I Highly scalable end-to-end tree boosting system.
I A novel sparsity-aware algorithm for parallel tree learning.
I Effective cache-aware block structure for out-of-core tree

learning.



Gradient boosting idea



Xgbsoost gradient boosting idea

1. Change loss function: L = l + Ω, where Ω is special
regularization component combining L1 and L2 regularization, l -
original loss.

2. Usually, for best split finding one can use either Gini or Entropy
criteria. In xgboost, we can obtained more efficient split criteria
using second order derivative approximation:



Shrinkage and Column Subsampling

Over-fitting preventing techniques:
1. Shrinkage scales newly added weights by a factor η after each
step of tree boosting. Similar to a learning rate.
2. Column (feature) subsampling. According to user feedback,
using column sub-sampling prevents over-fitting even more so than
the traditional row sub-sampling (which is also supported).



Split finding algorithms

The most time and resource consuming operation is finding best
splits. To optimize it following algorithms were proposed:
I Exact Greedy
I Approximate Algorithm
I Histogram-based



Exact Greedy

"Naive approach". Simple but highly inefficient in terms of
computation power and memory.



Approximate Algorithm

Continuous features are bucketed into discrete bins. It costs
O(bin ∗ feature) for split point finding.



Histogram-based

Similar to Approximate algorithm, but for each bin we first
construct statistic histogram. Then use it to find best split.



To propose bin candidates special technique "Weighted Quantile
Sketch" is used. It aggregates gradient statistics to create uniform
bins. More details could be found in the paper.
Another optimization step is "Sparsity-aware Split Finding".
Default direction in each tree node added. When a value is missing
in the sparse matrix x, the instance is classified into the default
direction.



System design

I Column Block for Parallel Learning (Special use of memory, in
order to perform better task parallelisation)

I Cache-aware Access (Similar to mini-batch in neural network,
fit several objects in memory and perform fast operations in
memory)

I Blocks for Out-of-core Computation (Special technique to
store and load data from dist in order to share information
between operations)



Results


	Introduction

