XGBoost: A Scalable Tree Boosting System

Daniil Fishman

Novosibirsk State University

23.04.2020

What is xgboost?

- Algorithm

> Optimization-technique
> Method-of-ensemble

» Library

What is xgboost? Library
© Watch 989 W Star 18.8k Y Fork 7.5k

» 90 000+ lines of C4++ code.
> API for R, Python, Java, Scala

» Multithred and multinode versions

Why is it so fast?
» Highly scalable end-to-end tree boosting system.
» A novel sparsity-aware algorithm for parallel tree learning.

» Effective cache-aware block structure for out-of-core tree
learning.

Gradient boosting idea

Input: training set {(z;, ;) }7, , a differentiable loss function L(y, F(«)), number of iterations M.
Algorithm
1. Initialize model with a constant value:
"
Fy(x) = argminy_ L(y;, 7).
L i=1
2 Form=1to M
1. Compute so-called pseudo-residuals:
aL(y",F(ﬂJi))]
OF(z:) I pa)-my 1w

2 Fita base leamner (or weak learner, e g. tree) hy, () to pseudo-residuals, i e train it using the training set {(;, i) }7_;

r{m:—{ fori=1,...,n.

3. Compute multiplier 4y, by solving the following one-dimensional optimization problem:
n
Y = argmin ¥ L (Y5, Frn 1 (%) + Yhon (5:)) -
ki i=1
4. Update the model:
Fn(@) = Fin1(2) + Yo o ().
3. Output Fyg ().

Xgbsoost gradient boosting idea

1. Change loss function: L =1+ , where Q is special
regularization component combining L; and L; regularization, / -
original loss.

2. Usually, for best split finding one can use either Gini or Entropy
criteria. In xgboost, we can obtained more efficient split criteria
using second order derivative approximation:

1 Cier, 9 | Ciern9)® (Eier9)* |
2| S bt S kAN S kA

Lsptit =

Shrinkage and Column Subsampling

Over-fitting preventing techniques:

1. Shrinkage scales newly added weights by a factor 7 after each

step of tree boosting. Similar to a learning rate.

2. Column (feature) subsampling. According to user feedback,

using column sub-sampling prevents over-fitting even more so than
the traditional row sub-sampling (which is also supported).

Split finding algorithms

The most time and resource consuming operation is finding best
splits. To optimize it following algorithms were proposed:

» Exact Greedy
> Approximate Algorithm
» Histogram-based

Exact Greedy

"Naive approach". Simple but highly inefficient in terms of
computation power and memory.

I
Algorithm 1: Exact Greedy Algorithm for Split Finding

Input: /, instance set of current node
Input: d, feature dimension
gain + 0
G Yier i H X i
for k =1 to m do
Gr+ 0, HL + 0
for j in sorted(I, by x;i) do
GL+ Gr+gj, Ho «+ Hr + h;
Gr+ G—Gr, Hr «+ H — Hy

+2 42 -
Gy + Gh _ a2)
Hp+A Hp+A H+X

score < max(score,
end
end
Output: Split with max score

Approximate Algorithm

Continuous features are bucketed into discrete bins. It costs
O(bin x feature) for split point finding.

Algorithm 2: Approximate Algorithm for Split Finding
for k =1 to m do
Propose Sk = {sk1,8k2, - - sk} by percentiles on feature k.

Proposal can be done per tree (global), or per split(local).
end

for k =1 tom do
Giw == X e fjlon, 2xn o011 9
Hyy =3 h

GE€{H ISk, 02Xk >k w1}

end

Follow same step as in previous section to find max
score only among proposed splits.

Histogram-based

Similar to Approximate algorithm, but for each bin we first
construct statistic histogram. Then use it to find best split.

Propose f-th feature of all |nslances Candldate sp-llts
candidate |||-!Jf | Vi | Il'M-l |:> s_T] q << Nf
splits
S first-order gradients second-order gradients
oy o= llola] Bl L-[Jb]
Construct
gradient
=2 B pErh
1 '2 1 2
T— G6°'§G H, y B
{_H_% ."_A_
Find split IE”| I]E._.,HE;.[En] y—:> G= G;+GGRRH H;;:Hn
a i L histogram bin J : ’ H" t4 Hi+d Ha+d He+d H+1 B

To propose bin candidates special technique "Weighted Quantile
Sketch" is used. It aggregates gradient statistics to create uniform
bins. More details could be found in the paper.

Another optimization step is "Sparsity-aware Split Finding".
Default direction in each tree node added. When a value is missing

in the sparse matrix x, the instance is classified into the default
direction.

System design

» Column Block for Parallel Learning (Special use of memory, in
order to perform better task parallelisation)

» Cache-aware Access (Similar to mini-batch in neural network,
fit several objects in memory and perform fast operations in
memory)

» Blocks for Out-of-core Computation (Special technique to
store and load data from dist in order to share information
between operations)

Results

Table 3: Comparison of Exact Greedy Methods with
500 trees on Higgs-1M data.

Method Time per Tree (sec) | Test AUC
XGBoost 0.6841 0.8304
XGBoost (colsample=0.5) 0.6401 08245
scikit-learn 28.51 0.8302
R.gbm 1.032 0.6224

Table 4: Comparison of Learning to Rank with 500
trees on Yahoo! LTRC Dataset

[Method Time per Tree (sec) | NDCG@10
XGBoost 0.826 0.7892
XGBoost (colsample=0.5) 0.506 0.7913
pGBRT [27] 2576 0.7915

	Introduction

