Development of computational algorithms linking epigenetic features and three-dimensional organization of chromatin

Daniil Fishman

Novosibirsk State University

23.04.2020

Task description: Why it is important?

It is assumed that genome has a loop organization, so the far in linear structure parts of the genome appear close to each other in space. A number of studies have shown that changes in the 3D-contacts of the specific parts of genome during chromosomal rearrangements can lead to the genetic diseases. Existing methods for determining 3D organization of the genome implies a series of time-consuming experiments. Therefore, prediction of 3D-contacts of normal and mutated genomes is highly important for clinical diagnostics.

Goals: The main goal of the following work is to predict contacts between different regions in DNA.

Tasks: To achieve that goal we are going to develop an algorithm, using the experimental information about DNA structure and DNA-protein interactions and applying machine learning techniques.

Task description: Mathematical problem definition

Lets present DNA of length genome size (which means DNA consist of genome size letters) as a stretch of segments of size dist bin, $1 \leq d$ ist bin $\leq d$ genome size. Let i and j be indexes (coordinates) of two DNA segments of length dist bin, $1 < i, j <$ genome size/dist bin. Let S be symmetric matrix, each value S_{ii} correspond to experimental measure reflecting Euclidean distance between DNA segments *i* and *j*. We will call S_{ii} contact between *i* and *j*. Let A be experimentally measured DNA-protein interaction matrix, where $A_{k\rho}$ is experimentally measured interaction between protein k and DNA segment p of length 1, $k = 1, \ldots, N$;

 $p = 1, \ldots,$ genome size.

Let $B = B_1....B_{\text{genome}}$ size be a vector of categorical variables of length genome size, with each element $B_k \in \{A, T, G, C, N\}$ representing experimentally measured DNA sequence. Task: For each given A, B, i, j and dist bin satisfying $|i-j| * dist_bin < 1.5e^7$ predict $S_{ij}.$

Approach 1

Use existing algorithm:

Figure 1: Histogram of S_{ii} values

Sean Whalen, Rebecca M Truty, Katherine S Pollard, Nature Genetics 2016 "Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin" (TargetFinder). Nature Genetics, Impact factor 27.125.

Approach 1

Figure 2: Intersection distribution. Figure 3: After and before removing duplicates.

Approach 2

Develop new method to predict 3D structure:

We will predict contacts not just for "contact-rich areas" but for all regions with a distance less than $1, 5 * e^7$.

Figure 4: Contacts-distance dependence on logarithmic scale

Data structure and preparation

- $\blacktriangleright \sim 120000$ objects in train
- \triangleright ~ 30000 objects in test
- Information about 15 proteins in the "window" between regions
- \triangleright 5000, 10000, 15000, ..., 15000000 possible window sizes
- \triangleright Unprocessed values of proteins (vectors) considered as features

Methodologies

- \triangleright Classical algorithms (Gradient boosting, linear regression) using statistical features.
- \blacktriangleright Neural networks using unprocessed signals.

Techniques

Figure 5: Model architecture

Training process

- SGD optimizer ($Ir = 3 * 10^{-6}$)
- \blacktriangleright Batch normalization
- \blacktriangleright log contacts
- \triangleright sigmoid activation function on last layer
- \triangleright cos lr sheduler
- \triangleright 100 epochs (best usually is about 30-40)

Results

Figure 6: Predicted/train

Results

Table 1: Mean Squared Error for different algorithms