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Introduction

Real-world decision making processes that wish to leverage neural
networks are frequently faced with:

lack of data
need for reliable uncertainty estimates

and these two problems are often entangled. Unsolved, they lead
model to overconfident behaviour and in some situations (e.g.
medical applications, self-driving cars, etc.) it can be dangerous.
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Introduction

To address the issue of overconfident predictions, recent works have
proposed approaches like calibration methods, frequentist
interpretations of ensembles, and approximate Bayesian inference.

The current research in BDL is primarily divided into variational
inference methods and Monte Carlo methods.
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Introduction

Hypernetworks are known as able to model a wide range of
distributions and can therefore provide rich variational
approximations.

We propose to combine prior work on implicit variational inference
with the concept of hypernetworks. This builds Bayes by
Hypernet as we reinterpret hypernet-works as implicit distributions
similar to generators in generative adversarial networks and use
them to approximate the posterior distribution of the weights of a
neural network.

Next figure shows example of uncertainty difference for various
machine learning methods.
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Introduction

Рис.: Toy example: Real function (dashed line) with sampled data points
(black dots). The proposed BbH exhibits the best trade-off between
predictive uncertainty and regression fit. MC-Dropout, deep ensembles
and the MAP produce a good fit but underestimate the predictive
uncertainty. Multiplicative Normalizing Flows (MNF) and Bayes by
Backprop (BbB) achieve a slightly worse fit and predictive uncertainty
than BbH.
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Introduction

We introduce Bayes by Hypernet (BbH) which avoids
hand-crafted strategies of building variational approximations and
instead exploits the inherent capabilities of learned approximations
to model rich, varied distributions.

We show that compared to other Bayesian methods, BbH achieves
competitive performance on small networks and demonstrates
comparable predictive accuracy without compromising predictive
uncertainty, while being the least vulnerable against adversarial
attacks.
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Bayes by Hypernet

Рис.: Illustration of the components of Bayes by Hypernet: The
hypernetwork G takes a sample z of distribution p(z) and converts it into
a sample of the weights w of the main network. The hypernetwork in Fig.
2 (a) generates samples of the weights of the second layer of the main
network. The main network takes a data sample x and generates an
output y using the weight samples generated by the hypernetworks.
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Variational Bayesian Neural Networks

Variational Bayesian Neural Networks:
Given a dataset D with data points (x1, y1), ..., (xn, yn) variational
inference for Bayesian neural networks aims to approximate the
posterior distribution p(w |D) of the weights w of a neural network.

Given this distribution we can estimate the posterior prediction ŷ of
a new data point x̂ as

P(ŷ |x̂ ,D) = Ew [P(ŷ |x̂ ,w)].

Because exact Bayesian inference is usually technically difficult in
neural networks we find a variational approximation Q(w |R) with
parameters R that maximises the evidence lower bound (ELBO):

R∗ = argmin
R

KL[Q(w |R)||P(w |D)]
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Hypernetworks

Hypernetworks as Implicit Distributions:
Implicit distributions are distributions that may have probability
densities hard to calculate but allow for easy sampling.

They enable simple calculation of approximate expectations and
their corresponding gradients. Probably the most well-known group
of implicit distributions are generative adversarial networks that can
transform a sample from a simple noise distribution into
high-fidelity images.
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Hypernetworks

Using an implicit distribution to model the weights of a neural
network requires a generator that is able to capture inherent
complexity of neural networks weights.

Hypernetworks are shown to be able to generate weights of
networks like ResNets or RNNs while still achieving competitive
state-of-the-art performances.

11 / 19



Introduction Model Description Evaluation and Comparison Conclusion

Hypernetworks

Let G be a hypernetwork with parameters R. Further, let z be an
input vector to the hypernetwork G that contains information
about the weight w to generate. Then weights w of the main
network are generated as w = G(z |R).

When z is a sample from a simple auxiliary random variable the
hypernetwork resembles a generator within the GAN framework.
Rather than generating high-fidelity image samples, our generator
predicts samples of the weight distribution of the main network.
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Experiments

We aim to assess the predictive accuracy of a method, and also its
ability to estimate the predictive uncertainty. We test:

accuracy
the entropy of the softmax outputs (as a measure of predictive
uncertainty and the method’s robustness against adversarial
examples, aimed to "fool"the network)

The high uncertainty predictions on unseen data can be important
in real-life decision processes as they can be used to trigger a
request for human support.
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Comparison or setups

We employ 3-layer fully-connected networks with [64, 256, 512]
units as hypernetworks for all experiments, as we did not find a
general improvement by adding more layers or units. We train the
deep ensembles without predictive uncertainty as we found it to
sometimes result in numerically unstable training.
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Comparison of predictions

All methods achieve comparable accuracy, with BbH only being
outperformed by deep ensembles and MC-Dropout. However, BbH
exhibits a higher predictive uncertainty, only outperformed by BbB
on this metric. The runtime of BbH and MNF are significantly
increased over other approaches, because of a relative high
overhead to generate the weights compared to the actual network
architecture.
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Comparison of predictions
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ЙОХОХО
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Conclusion
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Thanks for your attention!
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