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» Optimal brain damage. In Advances in Neural Information
Processing Systems 1990.

» Learning both weights and connections for efficient neural

networks. In Advances in Neural Information Processing
Systems, 2015.

» Deep Compression, 2016
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* During synaptic pruning, the brain eliminates extra synapse removing
connections in the brain that are no longer needed

* the brain is plastic, maintains efficient brain function as we get older
and learn new complex information
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Algorithm

Choose a reasonable network architecture
Train the network until a reasonable solution is obtained

Compute the second derivatives hu for each parameter

L 1 wi
Compute the saliencies for each parameter: L,= E[H-lq]
qaq
Sort the parameters by saliency and delete some low-saliency

parameters

Iterate to step 2
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* Learning the connectivity via normal network training.

* Unlike conventional training, however, we are not learning the final
values of the weights, but rather we are learning which connections
are important.
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The CONYV layers (on the left) are more sensitive to
pruning than the fully connected layers (on the right)
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Network Top-1 Error  Top-5 Error | Parameters gg:: pression
Baseline Caffemodel [26] | 42.78% 19.73% 61.0M 1x

Data-free pruning [28] 44.40% - 39.6M 1.5%
Fastfood-32-AD [29] 41.93% - 32.8M 2%
Fastfood-16-AD [29] 42.90% - 16.4M 3.7x

Collins & Kohli [30] 44.40% - 15.2M 4x

Naive Cut 47.18% 23.23% 13.8M 4.4x

SVD [12] 44.02% 20.56% 11.9M 5 X

Network Pruning 42.77% 19.67 % 6.7M 9x
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Deep Compression

Quantization: less bits per weight

Pruning: less number of weights
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weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids
-0.98 | 1.48 | 0.09 3 ] 2 1 3:. .
0.05 | -0.14 | -1.08 cluster 1 1 0 3 | 1.50 _.__/:\ , 1.48
-0.91 o |-1.03 E> ] 3 1 0 1| 0.00 -0.04
0 | 1.53| 1.49 3 1 2 2 | -1.00 %lr |-097
gradient
-0.02 “’5“‘1’ 0.03 | 0.01 | -0.02 mé;ﬂ 0.02
0.04 | 0.01 0.02 | -0.01 ) 0.01 | 0.04 | -0.02 0.04
001 | -0.02 -0.07 | -0.02 | -0.07 | 0.01 -0.03

Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).
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weights cluster index fine-tuned
(32 bit float) {2 bit uint) centroids centroids
1.48 3 ] 2 1 3:. .

cluster 1 1 ] 3 2] 1.50 1.48
o )
o 3 1 1] 1| 0.00 =0.04
3 1 2 2 1| «1.00 ®Ir |.097

gradient

-0.02 reduce 0.02
0.01 | 0.04 | -0.02 0.04
-0.01 | 0.01 -0.03

We use k-means clustering to identify the shared weights for each layer
of a trained network, so that all the weights that fall into the same
cluster will share the same weight.
Weights are not shared across layers. We partition n original weights
W = {wq{,wy,...,w,} into k clusters C = {c{,Cy, ...,C}, n D k, so as to
minimize the within-cluster sum of squares (WCSS):

K

arggnm _ Z Z W — c;|?
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Table 1: The compression pipeline can save 35x to 49x parameter storage with no loss of accuracy.

Network Top-1 Error  Top-5 Error | Parameters Egt]: pIess
LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed | 1.58% - 27 KB 40 %
LeNet-5 Ret 0.80% - 1720 KB

LeNet-5 Compressed 0.74% - 44 KB 39 x
AlexNet Ref 42.78% 19.73% 240 MB

AlexNet Compressed 42.78% 19.70% 6.9 MB 35 x
VGG-16 Ref 31.50% 11.32% 552 MB

VGG-16 Compressed 31.17% 10.91% 11.3MB 49 x




N clate References

*THE REAL SCIENCE

[30]Y. Le Cun, J. S. Denker, S. A. Sola, and T. B. Laboratories, “Optimal
Brain Damage,” pp. 598-605.

[31] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both Weights and
Connections for Efficient Neural Networks,” pp. 1-9, 2015.

[33] S. Han, H. Mao, and W. J. Dally, “DEEP COMPRESSION:
COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING ,
TRAINED QUANTIZATION,” pp. 1-14, 2016.



O Je NOVOSIBIRSK
. STATE
o UNIVERSITY

*The real science

MOBILENETS FOR
CROP DISEASE RECOGNITION

Munyaradzi Talent Njera

Wednesday 13th May, 2020

Prof E. Pavlovsky

Hosocubupckuii ® o

Wik By TOCYyJapCTBEHHbIN

i yHUBEpPCUTET °



J Novosibirsk .
N State Why Agriculture

Lniversity

*THE REAL SCIENCE

Attractive Opportunities in Agriculture loT Market

10.4+

= The agriculture loT market 8 expected to be worth USD 20.9 billion by
2024—growing at a CAGR of 10.4% dunng 2019-2024.

* Increase Increasing adoption of Internet of Things (loT) and Artificial
Intelligence (Al) technology by farmers and growers, focus on livestock
monitoring and disease detection to improve farming efficiency, and
rising demand for agricultural production owing to increasing population
are the major drivers for this market.

= Advent of Big Data in agriculture farm, integration of smartphones with
hardware devices and software applications and rise in use of unmanned
aerial vehicles (UAVS)/drones in precision farmng would create huge
2019-e 2024-p growth opportunities for agric uiture loT market
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What is the Problem

1. Edge Devices and Al

2. Sustainability of Al, The need for Green Al
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* Mobile devices are battery constrained, making power hungry applications
such as deep neural networks hard to deploy.

* Energy consumption is dominated by memory access. Under 45nm CMOS
technology, a 32 bit floating point add consumes 0.9pJ, a 32bit SRAM cache
access takes 5pJ, while a 32bit DRAM memory access takes 640pJ, which is
3 orders of magnitude of an add operation.

* Large networks do not fit in on-chip storage and hence require the more
costly DRAM accesses.

* Running a 1 billion connection neural network, for example, at 20fps would
require (20Hz)(1G)(640pJ) = 12.8W just for DRAM access - well beyond the
power envelope of a typical mobile device.

* The goal is to reduce the storage and energy required to run inference on
such large networks so they can be deployed on mobile devices.
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Deep Learning
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Figure 1: Journal articles mentioning “deep learing” or “deep neural network”, by nation.”
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The need for Green Al

Two Distinct Eras of Compute Usage in Training AI Systems
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* Efficiency measures

Al solution for crop disease using mobilenets
* Reproduce findings using a different dataset

Discussion

e Can Al based on these modern architectures build
AGl which is sustainable? Can quantum
computing reach such levels of efficient
computing for future neural networks?
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* Dataset

* Model Selection

* Model Compression

* Efficiency Measurement
* Deployment
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Criteria:
1. Pointwise and depthwise convolution concept

2. Number of parameters less than 10mil

Selected : | |
1. SqueezeNet S ! Ny
2. MOblIeNet - Pointwise Convolution ) | | '

1X1 conv \\\ X nxnﬁonv X \\\
3. EfficientNet = .lll LN |||
4. NasNetMobile N N/

*-. 3 i

5. ResNeth0 | — 7
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K,LLM

Conv(W,y)(i,j) = Z W(k,l,m) * YV(i+k,j+l,m)
k,lm

M
Pointwise Conv (W,y) jy = z Win * Y(@i,jm)
m

K,L

Depthwise Conv (W,y) jy = Z Wi * Y(itk,j+0)
7

SepConv(l/Vp,Wd,y)(l_’j) = Pointwise Conv (; j (Wp, Depthwise Conv (i,j)(Wd,y))
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Crop Disease
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Pruning
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Crop Disease
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Crop Disease
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e Size

* Parameters
* Flops
* Accuracy

* Energy consumed (Training and Inference)
- why at training & inference

* Energy efficiency=Energy/MFlops the lower the
better
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» Continuous capturing
images using an automated
sliding rail on a marked plant
bed

solution for crop disease using mobilenets
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Calculate Plant Health

« Use NDVIformulation to
calculate plant health on
image

» Create heatmaps of plant
health for visualization

Image Preprocessing

* Merge images (mosaic
image)

+ Geo-reference image

» Break image for prediction

Prediction
* Use neural networks to
predict plant disease

Vis

Stor

valize

Geo-
coordinates

Augmented Reality

+ Use GPS coordinates to
augment camera image
disease predicted section



+* \FL‘,’J ibirsk
N OIS ity Al solution for crop disease using mobilenets
*THE REAL SCIENCE

ICLR Workshop Challenge #1: CGIAR Computer currently ranked

Vision for Crop Disease 5 out of 304

zindi.africa/competitions/iclr-workshop-challenge-1-cgiar-computer-vision-for-crop-disease

Identify wheat rust in images from Ethiopia and Tanzania, and win a trip to

present your work at ICLR 2020 in Addis Ababa.
29 January—29 March 2020



