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Creator of GAN

lan Goodfellow

* Director of Machine Learning in the Special
Projects Group at Apple.

* Research scientist at Google Brain
* Lead author of the textbook Deep Learning

 Listed as one of the Innovators Under 35 by
MIT Technology Reviews

* Invented GAN in 2014




Generative vs Discriminative models

Generative models Discriminative models

learn to produce realistic examples distinguish between classes
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What is GAN?

* GANs are composed of two
models that compete with each
other and reach a point where
realistic examples are produced
by the generator.

* The generator learns to make
fake look real

* The discriminator learns to
distinguish real from fake.




Overview of GAN structure

* Both the generator and
the discriminator are
neural networks.

* The generator output is
connected directly to the
discriminator input.

* Through backpropagation,
the discriminator's
classification provides a
signal that the generator
uses to update its
weights.

Real images

Random input

Generator

=
n
- 2
> Sample 3 3
/ "8
1]
—
o
=
Discriminator
\ o
=3
» Sample o @
" 8
=)

\

https://developers.google.com/machine-learning/gan/gan_structure



GAN Training — Discriminator Training

1. Thediscriminatorclassifies Both real and fake Od
both real data and fake data examples
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GAN Training —

1. Samplerandom noise.

2. Produce generatoroutput
from sampled random noise.
3. Get discriminator"Real" or
"Fake" classification for
generator output.

4. Calculateloss from
discriminatorclassification.
5. Backpropagatethrough both
the discriminator and

generatorto obtain gradients.

6. Use gradientsto change only
the generator weights.
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GAN Training - Intuition
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https://cedar.buffalo.edu/~srihari/CSE676/22.2-GAN%20Theory. pdf



GAN Training - Intuition
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GAN Training - Intuition
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GAN Training - Intuition

Generative
distribution p,(G(2))

Data generating
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Value function

E,is the E, is the expected G(z) is the
expected value value over generator's
over all real all generated fake

output when

data instances instances G(z) given noise z
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D(x) is the discriminator's D(G(z)) is the
estimate of the
probability that real data
instance x is real

discriminator's estimate
of the probability that a
fake instance is real

e The Generator tries to minimize this function while the Discriminator tries to maximize it.

 The Generator can't directly affect the log(D(x)) term in the function, so it minimizes
the equivalent log(1 - D(G(z))).



Alternate gradient updates

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G 1s poor, [J can reject samples with high confidence because they are clearly different from

the training data. In this case, log(1 — D(G(z))) saturates. Rather than training G to minimize
log(1 — D{G(z))) we can train (7 to maximize log D((G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.
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GAN — Proof of optimality

We first consider the optimal discriminator D for any given generator (.

Proposition 1. For (5 fixed, the optimal discriminator D is

* . Pdam(ﬂ?]
Do) = a@ + ;@) @

Proof. The training criterion for the discriminator D, given any generator (7, is to maximize the
quantity V (G, D)

V(G.D) = [ pun(@)loB(D(@)dz + [ pa(=)log(1 - D(g(2)d:

i Z

= [ pun(@) log(D(@) + Py (@) log(1 — D(w))dz ©

For any (a,b) € R? \ {0,0}, the function y — alog(y) + blog(1l — y) achieves its maximum in

0, 1] at —%++ The discriminator does not need to be defined outside of Supp(Paaa) U Supp(py),

concluding the proof. []




GAN — Proof of optimality

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion

B ~pan 108 DG ()] + oy, [log(1 — Dg())]

then p, converges t0 Pgaa

Proof. Consider V (G, D) = U(p,, D) as a function of p, as done in the above criterion. Note
that U(pg, D) is convex in py. The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(z) =
sup,c 4 fol(z) and f,(z) is convex in z for every a, then dfz(x) € Of if § = argsup,. 4 fo(z).
This 1s equivalent to computing a gradient descent update for p, at the optimal D given the cor-
responding GG. supp, U(p,, D) is convex in p, with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of p,, p, converges to p., concluding the proof. []



GAN - Experiments

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD ¢) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional™ generator)



GAN -Advantages and disadvantages

Advantages

* Only backprop is used to obtain
gradients

* Generator network not being
updated directly with data
examples, but only with gradients
flowing through the discriminator
=> computational advantage

* GAN can represent very sharp,
even degenerate distributions

Disadvantages

* D must be synchronized well with G
during training



GAN evolutions and applications



https://www.thispersondoesnotexist.com/

Companies using GAN
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