## Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

Nils Reimers and Iryna Gurevych Ubiquitous Knowledge Processing Lab (UKP-TUDA) Department of Computer Science, Technische Universität Darmstadt

Presented by Nikita Nikolaev BDA&AI Master's Degree student

### Introduction

What are we going to talk about?

- BERT and RoBERTa: previous state-of-the-art
- Semantic Textual Similarity (STS) and other tasks
- BERT's overhead
- Brand new Sentence-BERT: modifications with siamese and triplet networks
- Highlights, results, comparisons, etc.

**Related Works** 

# **BERT: B**idirectional **E**ncoder **R**epresentation from **T**ransformers

#### Highlights:

- Question answering
- Sentence classification
- Sentence-pair regression
- Input two sentences, separated by a special [SEP] token
- Multi-head Attention (12 or 24 layers)



#### RoBERTa: Robustly Optimized BERT Approach

#### Highlights:

- Iterates on BERT's pretraining procedure
- Training the model longer
- With bigger batches
- Over more data
- Removing the next sentence prediction objective
- Training on longer sequences
- Dynamically changing the masking pattern applied to the training data



### **SotA sentence embeddings**

- Skip-Thought
- InferSent (outperforms previous)
- Universal Sentence Encoder
- etc.

Comparisons will be available a bit later!

### **BERT's disadvantages?**



Sentence-BERT: Model Overview

### **Sentence-BERT**

SBERT adds a pooling operation to the output of BERT / RoBERTa to derive a fixed sized sentence embedding.

Strategies:

- Using the output of [CLS] token
- Computing the mean of all output vectors (MEAN-strategy)
- Computing a max-over-time of the output vectors (MAX-strategy)

SBERT can be tuned in **less than 20 minutes**, while yielding better results than comparable sentence embedding methods.

#### Siamese architecture overview



#### **Classification objective**

Figure 1: SBERT architecture with classification objective function, e.g., for fine-tuning on SNLI dataset. The two BERT networks have tied weights (siamese network structure).



### **Regression objective**

Figure 2: SBERT architecture at inference, for example, to compute similarity scores. This architecture is also used with the regression objective function.



#### **Triplet objective**

$$max(||s_a - s_p|| - ||s_a - s_n|| + \epsilon, 0)$$

Given an anchor sentence **a**, a positive sentence **p**, and a negative sentence **n**, triplet loss tunes the network such that the distance between **a** and **p** is smaller than the distance between **a** and **n**.

## **Experiments and Results**

#### **Experiments and results**

| Model                      | STS12 | STS13 | STS14 | STS15 | STS16 | STSb  | SICK-R | Avg.  |
|----------------------------|-------|-------|-------|-------|-------|-------|--------|-------|
| Avg. GloVe embeddings      | 55.14 | 70.66 | 59.73 | 68.25 | 63.66 | 58.02 | 53.76  | 61.32 |
| Avg. BERT embeddings       | 38.78 | 57.98 | 57.98 | 63.15 | 61.06 | 46.35 | 58.40  | 54.81 |
| BERT CLS-vector            | 20.16 | 30.01 | 20.09 | 36.88 | 38.08 | 16.50 | 42.63  | 29.19 |
| InferSent - Glove          | 52.86 | 66.75 | 62.15 | 72.77 | 66.87 | 68.03 | 65.65  | 65.01 |
| Universal Sentence Encoder | 64.49 | 67.80 | 64.61 | 76.83 | 73.18 | 74.92 | 76.69  | 71.22 |
| SBERT-NLI-base             | 70.97 | 76.53 | 73.19 | 79.09 | 74.30 | 77.03 | 72.91  | 74.89 |
| SBERT-NLI-large            | 72.27 | 78.46 | 74.90 | 80.99 | 76.25 | 79.23 | 73.75  | 76.55 |
| SRoBERTa-NLI-base          | 71.54 | 72.49 | 70.80 | 78.74 | 73.69 | 77.77 | 74.46  | 74.21 |
| SRoBERTa-NLI-large         | 74.53 | 77.00 | 73.18 | 81.85 | 76.82 | 79.10 | 74.29  | 76.68 |

Table 1: Spearman rank correlation  $\rho$  between the cosine similarity of sentence representations and the gold labels for various Textual Similarity (STS) tasks. Performance is reported by convention as  $\rho$ ×100. STS12-STS16: SemEval 2012-2016, STSb: STSbenchmark, SICK-R: SICK relatedness dataset.

#### **Experiments and results**

| Model                      | MR    | CR    | SUBJ  | MPQA  | SST   | TREC | MRPC  | Avg.  |
|----------------------------|-------|-------|-------|-------|-------|------|-------|-------|
| Avg. GloVe embeddings      | 77.25 | 78.30 | 91.17 | 87.85 | 80.18 | 83.0 | 72.87 | 81.52 |
| Avg. fast-text embeddings  | 77.96 | 79.23 | 91.68 | 87.81 | 82.15 | 83.6 | 74.49 | 82.42 |
| Avg. BERT embeddings       | 78.66 | 86.25 | 94.37 | 88.66 | 84.40 | 92.8 | 69.45 | 84.94 |
| BERT CLS-vector            | 78.68 | 84.85 | 94.21 | 88.23 | 84.13 | 91.4 | 71.13 | 84.66 |
| InferSent - GloVe          | 81.57 | 86.54 | 92.50 | 90.38 | 84.18 | 88.2 | 75.77 | 85.59 |
| Universal Sentence Encoder | 80.09 | 85.19 | 93.98 | 86.70 | 86.38 | 93.2 | 70.14 | 85.10 |
| SBERT-NLI-base             | 83.64 | 89.43 | 94.39 | 89.86 | 88.96 | 89.6 | 76.00 | 87.41 |
| SBERT-NLI-large            | 84.88 | 90.07 | 94.52 | 90.33 | 90.66 | 87.4 | 75.94 | 87.69 |

Table 2: Evaluation of SBERT sentence embeddings using the SentEval toolkit. SentEval evaluates sentence embeddings on different sentence classification tasks by training a logistic regression classifier using the sentence embeddings as features. Scores are based on a 10-fold cross-validation.

# Thank You For Your Attention

... and remember, attention is all you need!

https://paperswithcode.com/paper/sentence-bert-sentence-embeddings-using