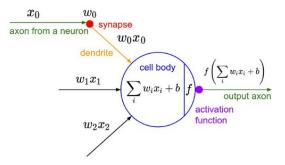
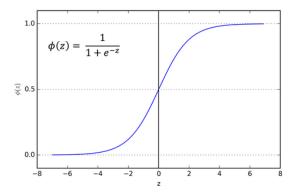
## Activate or Not: Learning Customized Activation

presentation by Mikhail Liz


November 2020

- Introduction
- Sigmoid Activation Function
- Rectified Linear Unit Activation Function
- ACON Activation Function
- Results


In artificial neural networks, the activation function of a node defines the output of that node given an input or set of inputs. Two types of activation functions:

- Linear Activation Function
- Non-linear Activation Functions

We need the activation function to introduce nonlinear real-world properties to artificial neural networks.

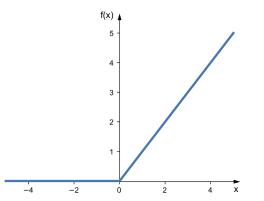


## The sigmoid function curve looks like a S-shape.



Advantages and disadvantages

#### Advantages


- Exists between zero to one
- The function is differentiable
- The function is monotonic but function's derivative is not

#### Disadvantages

• The vanishing gradient problem

Function type

Equation for ReLU function: f(x) = max(0, x)



## **ReLU** Activation Function

Advantages and disadvantages

#### Advantages

- It is easy and fast to calculate the derivative
- Sparsity of activation

Disadvantages

Dying ReLU problem

Approximation of the maximum function

## Equation for smooth maximum function:

$$S_{\beta}(x_1,\ldots,x_n)=\frac{\sum_{i=1}^n x_i e^{\beta x_i}}{\sum_{i=1}^n e^{\beta x_i}}$$

Approximation of the ReLU function

## Approximation of the ReLU function:

$$\begin{split} S_{\beta}\left(\eta_{a}(x),\eta_{b}(x)\right) &= \eta_{a}(x) \cdot \frac{e^{\beta\eta_{a}(x)}}{e^{\beta\eta_{a}(x)+e^{\beta\eta_{b}(x)}} + \eta_{b}(x) \cdot \frac{e^{\beta\eta_{b}(x)}}{e^{\beta\eta_{a}(x)+e^{\beta\eta_{b}(x)}}} \\ &= \eta_{a}(x) \cdot \frac{1}{1+e^{-\beta(\eta_{a}(x)-\eta_{b}(x))} + \eta_{b}(x) \cdot \frac{1}{1+e^{-\beta(\eta_{b}(x)-\eta_{a}(x))}}} \\ &= \eta_{a}(x) \cdot \sigma \left[\beta\left(\eta_{a}(x)-\eta_{b}(x)\right)\right] + \eta_{b}(x) \cdot \sigma \left[\beta\left(\eta_{b}(x)-\eta_{a}(x)\right)\right] \\ &= (\eta_{a}(x)-\eta_{b}(x)) \cdot \sigma \left[\beta\left(\eta_{a}(x)-\eta_{b}(x)\right)\right] + \eta_{b}(x) \end{split}$$

ACON-A: 
$$S_{\beta}(\eta_a(x), \eta_b(x))$$
 with  $\eta_a(x) = x, \eta_b(x) = 0$   
ACON-B:  $S_{\beta}(\eta_a(x), \eta_b(x))$  with  $\eta_a(x) = x, \eta_b(x) = px$   
ACON-C:  $S_{\beta}(\eta_a(x), \eta_b(x))$  with  $\eta_a(x) = p_1x, \eta_b(x) = p_2x$   
Meta-ACON: ACON-C with  $\beta$  trainable parameter

# ACON Activation Function

Property of the ACON

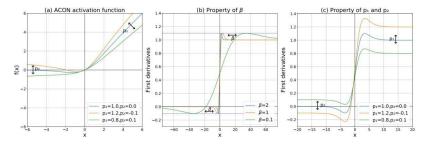



Figure 2: The ACON activation function and its first derivatives. (a) The ACON-C activation function with fixed  $\beta$  (see Fig. 3 for the influence of  $\beta$ ); (b-c) The first derivatives with fixed  $p_1\&p_2$  (b) and fixed  $\beta$  (c).  $\beta$  controls how fast the first derivative asymptotes to the upper/lower bounds, which are determined by  $p_1$  and  $p_2$ .

|                   | ReLU  |           |            | meta-ACON |           |                   |
|-------------------|-------|-----------|------------|-----------|-----------|-------------------|
|                   | FLOPs | # Params. | Top-1 err. | FLOPs     | # Params. | Top-1 err         |
| MobileNetV1 0.25  | 41M   | 0.5M      | 47.6       | 41M       | 0.6M      | 40.9(+6.7)        |
| MobileNetV2 0.17  | 42M   | 1.4M      | 52.6       | 42M       | 1.9M      | 46.2(+6.4)        |
| ShuffleNetV2 0.5x | 41M   | 1.4M      | 39.4       | 41M       | 1.7M      | 34.8(+4.6)        |
| MobileNetV1 0.75  | 325M  | 2.6M      | 30.2       | 326M      | 3.1M      | 26.4(+3.8)        |
| MobileNetV2 1.0   | 299M  | 3.5M      | 27.9       | 299M      | 3.9M      | 25.0(+2.9)        |
| ShuffleNetV2 1.5x | 301M  | 3.4M      | 27.4       | 304M      | 6.0M      | 24.7(+2.7         |
| ResNet-18         | 1.8G  | 11.7M     | 30.3       | 1.8G      | 11.9M     | <b>28.4</b> (+1.9 |
| ResNet-50         | 3.9G  | 25.5M     | 24.0       | 3.9G      | 25.7M     | <b>22.0</b> (+2.0 |
| ResNet-101        | 7.3G  | 44.1M     | 22.8       | 7.3G      | 44.1M     | <b>21.1</b> (+1.7 |
| ResNet-152        | 11.3G | 60.0M     | 22.3       | 11.3G     | 60.1M     | 20.5(+1.8         |

# Thank you for your attention!