PLUG AND PLAY LANGUAGE MODELS: A SIMPLE APPROACH TO CONTROLLED TEXT GENERATION.
(Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and Rosanne Liu.)

presented by Alexey Korolev

11 November 2020
1 Generative language model.
2 Plug and Play Language Model.
3 Autoregressive language model ($P(x)$).
4 Attribute model $p(a|x)$.
5 Plug and Play Language Model training.
6 Results.
Nowadays big generative language model archive great performs. But if we want to specify their work some problem arises. We can’t just finetune this model for our task because:

- This model is very big (over a billion parameters).
- Require massive amounts of computing resources.
- On enormous data sets which are often not publicly released.
Authors propose effective, easy to use method Plug and Play Language model. We need the next components:

1. autoregressive language model
2. attribute model.

We steer the enormous language model by gradients.
Autoregressive language model \(P(x) \)

Autoregressive Model is merely a feed-forward model, which predicts the future word from a set of words given a context. Start with your seed \(x_1, x_2, \ldots, x_k \) and predict \(x_{k+1} \). In formula that mean that we compute \(P(x_i | x_{i-1} \ldots x_{i-k}) \) and choose the biggest. Mainly generative language model is Autoregressive (GPT1&2).
In this work, we use the transformer approach. A history matrix H_t to consist of the key-value pairs from the past i.e

$$H_t = [(K^{(1)}_t, V^{(1)}_t), \ldots, (K^{(l)}_t, V^{(l)}_t)],$$

where $(K^{(l)}_t, V^{(l)}_t)$ is key-value pairs from l-th layer generated at all time-steps from 0 to t.

To generate next we use formula: $o_{t+1}, H_{t+1} = LM(x_t, H_t)$

$$x_{t+1}p_{t+1} = \text{Softmax}(W o_{t+1})$$

W is a linear transformation that maps the logit vector o_{t+1} to a vector of vocabulary size.
Attribute model $p(a|x)$, which takes a sentence x and outputs the probability that it possesses the attribute a. These models can be tiny and easy to train because, intuitively, classification is easier.

As topic prediction use bag of word \((p(a|x) = \sum_{i}^{k} p_{t+1}[w_i])\)

For sentiment prediction use softmax classifier.
Plug and Play Language Model training.

Main idea base on Bayes rule: \(p(x|a) \sim p(a|x)p(x) \)

There 3 steps:

1. Given a partially generated sentence, compute \(\log(p(x)) \) and \(\log(p(a|x)) \) and the gradients of each with respect to the hidden representation of the underlying language model.

2. Use the gradients to move the hidden representation of the language model a small step in the direction of increasing \(\log(p(a|x)) \) and increasing \(\log(p(x)) \).

3. Sample the next word.
Let ΔH_t be the update to H_t, such that generation with $(H_t + \Delta H_t)$ shifts the distribution of the generated text such that it is more likely to possess the desired attribute.

$$\Delta H_t + \alpha \frac{\nabla_{\Delta H_t} \log p(a|H_t+\Delta H_t)}{||\nabla_{\Delta H_t} \log p(a|H_t+\Delta H_t)||^\gamma} \rightarrow \Delta H_t$$

This update step can be repeated m times.

o_{t+1} as o'_{t+1}, $H_{t+1} = LM(x_t, H'_t)$, where $H'_t = H_t + \Delta H_t$. The perturbed o'_{t+1} is then used to generate a new distribution.
Kullback–Leibler (KL) Divergence: \(D_{KL}(P||Q) = \sum \log\left(\frac{P(x)}{Q(x)}\right) \)

We update \(H_t \) to minimise the KL divergence between the output distribution of the modified and unmodified language models in addition to the step above.

Post-norm Geometric Mean Fusion:

Tie the generated text to the unconditional \(p(x) \) LM distribution. We accomplish this by sampling from \(x_{t+1} \sim \frac{1}{\beta} (\tilde{p}_{gmt}^{\gamma_{gmt}} p_{t+1}^{1-\gamma_{gmt}}) \), where \(p_{t+1} \) and \(\tilde{p}_{t+1} \) are the unmodified and modified output distributions, respectively.
Results

B: the baseline, unchanged GPT-2 LM, sampled once;
BR: B but sampled r times, with best sample chosen based on the LL ranking and filtering based on Dist score;
BC: update the latent representations and then sample once; and lastly
BCR: update the latent representations and generate r samples, choose the best sample based on the LL score (after filtering out samples with low Dist scores).

CTRL: a recent language model.
WD: a weighted decoding baseline in which the B LM’s outputs are weighted directly toward maximizing $p(a|x)$.
language detoxification.

Controlled storytelling.
Thank for attentions!

https://github.com/uber-research/PPLM