XGBoost: A Scalable Tree Boosting System

Tiangi Chen, Carlos Guestrin

Kalmutskiy Kirill

November 2020

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 1/21

Ensemble methods

Ensemble methods aim at improving predictability in models by combining
several models to make one very reliable model.

The most popular ensemble methods:

e Bagging: sampling technique where samples are derived from the
whole population (set) using the replacement procedure

@ Stacking: technique for averaging predictions of different models

@ Boosting: technique that learns from previous predictor mistakes to
make better predictions in the future

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 2/21

Why XGBoost?

Highly scalable end-to-end tree boosting system

Effective regularization, which allows achieving high metrics

°
°

@ Important algorithmic optimizations

@ Novel sparsity-aware algorithm for parallel tree learning
°

Effective cache-aware block structure for out-of-core tree learning

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 3/21

For a given data set with n examples and m features D = {(;, i)}
(ID| = n,ie R™,y; € R), a tree ensemble model uses K additive functions
to predict the output.

K
Ji=o()=> fli), feF
k=1
where F = {f(x) = wg(x}(q : R™ — T,w € RT) is the space of
regression trees.

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 4/21

Regularized Learning Objective

To learn the set of functions used in the model, it is necessary to to
minimize the following regularized objective.

L(¢) =D 1Fiyi) + > Qfe)

i k
1
where Q(f) =~T + E)\HWHZ
Here / is a differentiable convex loss function that measures the difference
between the prediction y; and the target y;.

The second term penalizes the complexity of the model (i.e., the
regression tree functions).

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 5/21

Gradient Tree Boosting

The tree ensemble model includes functions as parameters and cannot be
optimized using traditional optimization methods in Euclidean space.

Let ﬁi(t) be the prediction of the i-th instance at the t-th iteration, we will
need to add f; to minimize the following objective.

t)_zly“}/l +ft())+Q(ft)

- (e 1
£ =y Uy, 9D + gife() + S 0] + Q(f)
i=1

where g; = }’}(t—l)/(yi,}?(t_l)) and h; = 8}?’(!71)/()/,-,)7(“1)) are first and
second order gradient statistics on the loss function.

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 6/21

Gradient Tree Boosting

. Objective £ =31y, 5 + fi(xi)) + Q)
L(g) = Udiy) + > QS
i k

1 2nd order . 1
where Q(f) =T + 5/\\|w\|2 Qpprox. = Z[l 370) + gafelxi) + GhafE (x0)] + Q(S)

Remove At _ o~ lh- 20 4 0
constants £ ;[y,ft(xlﬂ Shifi(xi)] +Q(f)

Scoring function to

evaluate quality of £®(q)
free structure 2 Z b

-ez, 9:)*

~T.
h.+/\+

i€l

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020

7/21

Instance index gradient statistics (>
1 @J gl.hl Y N
/-"__ .
G— _;_,ND Is = {2,3,5}
. 92, hz — Gy=g2+ags+gs
I = {l} Iz = {1} H:g = f!.g + ha + hs
3 @ g3,h3 Gi=q Ga=y4
Hl = hl hrl = !!.1
& .
g el
% Obj=-%;ma+3
5 g5, h5

The smaller the score s, the betterthe structure is

Figure 2: Structure Score Calculation. We only
need to sum up the gradient and second order gra-
dient statistics on each leaf, then apply the scoring
formula to get the quality score.

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 8/21

Shrinkage and column subsampling

XGBoost uses the following techniques to prevent overfitting

@ Shrinkage
o Scales newly added weights by a factor v
o Reduces influence of each individual tree
o Leaves space for future trees to improve model
e Similar to learning rate in stochastic optimization
o Can greatly affect the complexity of the model: high values lead to
fewer trees and vice versa

@ Column subsampling

o Subsample features (columns)
o Idea taken from the Random Forest algorithm
o Prevents overfitting more effectively than object subsampling (rows)

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 9/21

Split-finding algorithms

Algorithm 2: Approximate Algorithm for Split Finding
for k =1 to m do
Propose S, = {sk1, Sk2, -~ sm} by percentiles on feature k.
Proposal can be done per tree (global), or per split(local).
end
for k=1 tom do
Giv = ZJE{j\SkaXm)SN\u—ﬂ 95
Hy, = Z

end

GE{ilsk v 2xjr >k p—1}

Follow same step as in previous section to find max
score only among proposed splits.

o Exact
o Computationally demanding
e Enumerate all possible splits for continuous features
@ Approximate
o Algorithm proposes candidate splits according to percentiles of feature
distributions
e Maps continuous features to buckets split by candidate points
o Aggregates statistics and finds best solution among proposals

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020

Comparison of split-finding

__se—
e

X/X/

®—@ exact greedy
¥ global eps=0.3
@ @ local eps=0.3
v—¥ global eps=0.05

Test AUC

L I R T TR R TR R R VR
Number of lterations

Figure 3: Comparison of test AUC convergence on
Higgs 10M dataset. The eps parameter corresponds
to the accuracy of the approximate sketch. This
roughly translates to 1 / eps buckets in the proposal.
We find that local proposals require fewer buckets,
because it refine split candidates.

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 11/21

Sparsity-aware split finding

In many real-world problems, it is quite common for the input x to be
sparse. There are multiple possible causes for sparsity:

@ Presence of missing values in the data
@ Frequent zero entries in the statistics

@ Feature engineering such as one-hot encoding

How can this be dealt with? Define a “default” direction: when a value is
missing in the sparse matrix X, the instance is classified into the default
direction

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 12/21

Sparsity-aware split finding

32

16 Basic algorithm
B) j
4 TR
H‘\k
2 ~
1
0.5

Sparsity aware algorithm

Time per Tree(sec)

0.25
0.125
0.0625

0.03125

! 2NumberrflThreadsa 1

Figure 5: Impact of the sparsity aware algorithm
on Allstate-10K. The dataset is sparse mainly due
to one-hot encoding. The sparsity aware algorithm
is more than 50 times faster than the naive version
that does not take sparsity into consideration.

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 13/21

Column Block for Parallel Learning

The most time consuming part of tree learning is to get the data into
sorted order. The block structure can help us with this. Data in each
block is stored in the CSC format, with each column sorted by the
corresponding feature value

@ Data is stored on multiple blocks, and these blocks are stored on disk

@ Independent threads pre-fetch specific blocks into memory to prevent
cache misses

@ Block Compression

e Each column is compressed before being written to disk, and
decompressed on-the-fly when read from disk into a prefetched buffer

o Block Sharding

o Data is split across multiple disks / clusters
o Pre-fetcher is assigned to each disk to read data into memory

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 14 /21

Cache-aware access

While the proposed block structure helps optimize the computation
complexity of split finding, the new algorithm requires indirect fetches of
gradient statistics by row index, since these values are accessed in order of
feature. This is a non-continuous memory access.

o Exact Greedy Algorithm
Allocate an internal buffer in each thread

o Fetch gradient statistics into this buffer

o Perform accumulation in mini-batch

e As a result, reduce runtime overhead when number of rows is large
@ Approximate Algorithms

e Solve this problem by choosing a correct block size
o Small block size results in small workloads for each thread

e Large block size results in cache misses as gradient statistics do not fit
in cache

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 15/21

Cache-aware access

= Basic aigorithm " Basic agorihm == Igorthm " Basic agorihm
@@ Cache-aware algorithm 1) ®—e Cache-aware algorithm o @@ Cache-aware algorithm o @@ Cache-aware algorithm
e - . -
]] § g
H i [L
! © o °
& & 2 -3
= 1 1
£ £ & 3
£ £ £ £
1 o os|
DR N LA T i T3 i W C N S B
Number o Treads Nurmber o Treads Namber o Threads Number g Trreads
(a) Allstate 10M (b) Higgs 10M (c) Allstate 1M (d) Higgs 1M

Figure 7: Impact of cache-aware prefetching in exact greedy algorithm. We find that the cache-miss effect
impacts the performance on the large datasets (10 million instances). Using cache aware prefetching improves
the performance by factor of two when the dataset is large.

Kalmutskiy Kirill

=8 ook sze-2'12

0] % e biock sze=2+16
~. V-V block size=2"20

128 ™~ =2

_ [bk sizesrae

]

§ o

H

g 32|

£

H

7 i g
Number o Threads
(b) Higgs 10M
Figure 9: The impact of block size in the approxi-
mate algorithm. We find that overly small blocks re-
sults in inefficient parallelization, while overly large
blocks also slows down training due to cache misses.

GBoost: A Scalable Tree Boosting System November 2020

Datasets and results

Table 2: Dataset used in the Experiments.
Dataset n m Task
Allstate 10 M | 4227 | Insurance claim classification
Higgs Boson | 10 M 28 | Event classification
Yahoo LTRC | 473K | 700 | Learning to Rank
Criteo 1.7B | 67 | Click through rate prediction

Table 3: Comparison of Exact Greedy Methods with
500 trees on Higgs-1M data.

Method Time per Tree (sec) | Test AUC
XGBoost 0.6841 0.8304
XGBoost (colsample=0.5) 0.6401 0.8245
scikit-learn 28.51 0.8302
R.gbm 1.032 0.6224

Table 4: Comparison of Learning to Rank with 500
trees on Yahoo! LTRC Dataset

Method Time per Tree (sec) | NDCGQI0
XGBoost 0.826 0.7892
XGBoost (colsample=0.5) 0.506 0.7913
pGBRT [22] 2576 07915

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 17 /21

Out-of-core experiment

Kalmutskiy Kirill

4091
Block compression
2048|
g Ea5|c.;gnrithm '
T 1024 :
o H
= :
E_ : Compression+shard
g 512 '
= ! Out of system file cache
= ?__start from this point
256 :
H

28 2048

25 5 024
Number of Training Examples (million)
Figure 11: Comparison of out-of-core methods on
different subsets of criteo data. The missing data
points are due to out of disk space. We can find
that basic algorithm can only handle 200M exam-
ples. Adding compression gives 3x speedup, and
sharding into two disks gives another 2x speedup.
The system runs out of file cache start from 400M
examples. The algorithm really has to rely on disk
after this point. The compression4shard method
has a less dramatic slowdown when running out of
file cache, and exhibits a linear trend afterwards.

XGBoost: A Scalable Tree Boosting System

November 2020

18/21

Time Per Tree comparison

16384 H20,

8192]

4096|

2048| Spark MLLib

1024

Total Running Time (sec)

512

256

12855

756 512 7024 2048
Number of Training Examples (milion)

(a) End-to-end time cost include data loading

2048

<]
8
®

a
n

N
&
3

\Spark MLLib

Time per Iteration (sec)
N
8

XGBoost

256 512 1024 2048
Number of Training Examples (million)

Kalmutski Boost: A Scalable Tree Boosting System November 2020 19

Distributed experiment

2048

1024

512

Time per leration (sec)

256

128

8 16 32
Number of Machines

Figure 13: Scaling of XGBoost with different num-
ber of machines on criteo full 1.7 billion dataset.
Using more machines results in more file cache and
makes the system run faster, causing the trend
to be slightly super linear. XGBoost can process
the entire dataset using as little as four machines,
and scales smoothly by utilizing more available re-
sources.

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 20/21

Instead of a conclusion

exact approximate | approximate sparsity
System greedy | global local out-of-core aware parallel
XGBoost yes yes yes yes yes yes
pGBRT no no yes no no yes
Spark MLLib | no yes no no partially yes
H20 no yes no no partially yes
scikit-learn yes no no no no no
R GBM yes no no no partially no

XGBoost at the time of creation was a truly unique algorithm that was
able to take gradient boosting to a new level of quality.

Among the 29 challenge winning solutions 3 published at Kaggle's blog
during 2015, 17 solutions used XGBoost. For comparison, the second most
popular method, deep neural nets, was used in 11 solutions.

The success of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 21/21

