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Ensemble methods

Ensemble methods aim at improving predictability in models by combining
several models to make one very reliable model.

The most popular ensemble methods:

Bagging: sampling technique where samples are derived from the
whole population (set) using the replacement procedure

Stacking: technique for averaging predictions of different models

Boosting: technique that learns from previous predictor mistakes to
make better predictions in the future
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Why XGBoost?

Highly scalable end-to-end tree boosting system

Effective regularization, which allows achieving high metrics

Important algorithmic optimizations

Novel sparsity-aware algorithm for parallel tree learning

Effective cache-aware block structure for out-of-core tree learning
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Tree Boosting

For a given data set with n examples and m features D = {(i , yi )}
(|D| = n,i ∈ Rm, yi ∈ R), a tree ensemble model uses K additive functions
to predict the output.

ŷi = φ(i ) =
K∑

k=1

fk(i ), fk ∈ F

where F = {f (x) = wq(x)}(q : Rm → T ,w ∈ RT ) is the space of
regression trees.
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Regularized Learning Objective

To learn the set of functions used in the model, it is necessary to to
minimize the following regularized objective.

L(φ) =
∑
i

l(ŷi , yi ) +
∑
k

Ω(fk)

where Ω(f ) = γT +
1

2
λ‖w‖2

Here l is a differentiable convex loss function that measures the difference
between the prediction ŷi and the target yi .
The second term Ω penalizes the complexity of the model (i.e., the
regression tree functions).
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Gradient Tree Boosting

The tree ensemble model includes functions as parameters and cannot be
optimized using traditional optimization methods in Euclidean space.

Let ŷ
(t)
i be the prediction of the i-th instance at the t-th iteration, we will

need to add ft to minimize the following objective.

L(t) =
n∑

i=1

l(yi , ŷi
(t−1) + ft(i )) + Ω(ft)

L(t) '
n∑

i=1

[l(yi , ŷ
(t−1)) + gi ft(i ) +

1

2
hi f

2
t (i )] + Ω(ft)

where gi = ∂ŷ (t−1) l(yi , ŷ
(t−1)) and hi = ∂2

ŷ (t−1) l(yi , ŷ
(t−1)) are first and

second order gradient statistics on the loss function.
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Gradient Tree Boosting
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Example
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Shrinkage and column subsampling

XGBoost uses the following techniques to prevent overfitting

Shrinkage

Scales newly added weights by a factor ν
Reduces influence of each individual tree
Leaves space for future trees to improve model
Similar to learning rate in stochastic optimization
Can greatly affect the complexity of the model: high values lead to
fewer trees and vice versa

Column subsampling

Subsample features (columns)
Idea taken from the Random Forest algorithm
Prevents overfitting more effectively than object subsampling (rows)
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Split-finding algorithms

Exact

Computationally demanding
Enumerate all possible splits for continuous features

Approximate

Algorithm proposes candidate splits according to percentiles of feature
distributions
Maps continuous features to buckets split by candidate points
Aggregates statistics and finds best solution among proposals
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Comparison of split-finding

Kalmutskiy Kirill XGBoost: A Scalable Tree Boosting System November 2020 11 / 21



Sparsity-aware split finding

In many real-world problems, it is quite common for the input x to be
sparse. There are multiple possible causes for sparsity:

Presence of missing values in the data

Frequent zero entries in the statistics

Feature engineering such as one-hot encoding

How can this be dealt with? Define a “default” direction: when a value is
missing in the sparse matrix x, the instance is classified into the default
direction
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Sparsity-aware split finding
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Column Block for Parallel Learning

The most time consuming part of tree learning is to get the data into
sorted order. The block structure can help us with this. Data in each
block is stored in the CSC format, with each column sorted by the
corresponding feature value

Data is stored on multiple blocks, and these blocks are stored on disk

Independent threads pre-fetch specific blocks into memory to prevent
cache misses

Block Compression

Each column is compressed before being written to disk, and
decompressed on-the-fly when read from disk into a prefetched buffer

Block Sharding

Data is split across multiple disks / clusters
Pre-fetcher is assigned to each disk to read data into memory
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Cache-aware access

While the proposed block structure helps optimize the computation
complexity of split finding, the new algorithm requires indirect fetches of
gradient statistics by row index, since these values are accessed in order of
feature. This is a non-continuous memory access.

Exact Greedy Algorithm

Allocate an internal buffer in each thread
Fetch gradient statistics into this buffer
Perform accumulation in mini-batch
As a result, reduce runtime overhead when number of rows is large

Approximate Algorithms

Solve this problem by choosing a correct block size
Small block size results in small workloads for each thread
Large block size results in cache misses as gradient statistics do not fit
in cache
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Cache-aware access
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Datasets and results
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Out-of-core experiment
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Time Per Tree comparison
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Distributed experiment
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Instead of a conclusion

XGBoost at the time of creation was a truly unique algorithm that was
able to take gradient boosting to a new level of quality.

Among the 29 challenge winning solutions 3 published at Kaggle’s blog
during 2015, 17 solutions used XGBoost. For comparison, the second most
popular method, deep neural nets, was used in 11 solutions.

The success of the system was also witnessed in KDDCup 2015, where
XGBoost was used by every winning team in the top-10.
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