Introduction	Model Architecture	Datasets	Experiments and Results	Conclusion
00000	0000	0	000	00

Entity, Relation, and Event Extraction with Contextualized Span Representations

David Wadden, Ulme Wennberg, Yi Luan, Hannaneh Hajishirzi, Paul G. presented by Alexander Donets

Novosibirsk State University, 2020

Introduction	Model Architecture	Datasets	Experiments and Results	Conclusion
00000	0000		000	00

Contents

1 Introduction

- 2 Model Architecture
- 3 Datasets
- 4 Experiments and Results

5 Conclusion

Introduction ●0000	Model Architecture	Datasets 0	Experiments and Results	Conclusion
Introduct	ion			

Authors present a framework (model and data processing tools) for solving three **Information Extraction** tasks:

- Named Entity Recognition (NER)
- Relation Extraction (RE)
- Event Extraction (EE)

and also they solve auxiliary Coreference Resolution (CR) task to enhance model inference.

Introduction	Model Architecture	Datasets	Experiments and Results	Conclusion
0000				

Introduction

Def. 1

Text Span - a continuous sequence of tokens or their embeddings (vector representations of tokens).

Def. 2

Span Graph - a graph of entities with edges defining coreferences, relations and events.

Introduction 00●00	Model Architecture	Datasets O	Experiments and Results	Conclusion
Problem	Definition			

Given a document D represented as a sequence of words, we derive $S = \{S_1, ..., S_T\}$, the set of all possible within-sentence text spans.

Then, our goal is to solve:

- **CR** task: predict antecedent c_i for each span s_i
- NER task: predict entity type e_i for each span s_i ,
- RE task: predict relation r_{ij} for each pair of within-sentence spans (s_i, s_j),
- EE task: assign an event trigger label d_i for each predicted entity and predict event arguments a_{ij} for all spans s_j in the same sentence as d_i.

Introduction 000●0	Model Architecture 0000	Datasets ○	Experiments and Results	Conclusion
Global Co	ontext			

One of the toughest problems to address during solving these tasks is the problem of **global context modeling**. To make use of distant links between entities in text is not a trivial problem. Authors try to address this by employing several ideas.

Introduction 0000●	Model Architecture	Datasets 0	Experiments and Results	Conclusion
Highlights				

What key ideas authors employ in their work?

- Using Multi-Task Learning
- Using pre-trained BERT as text encoder. BERT creates contextual embeddings and eliminates need for hand-crafted features extraction. Authors test two options of using BERT: for fine-tuning alone, and with biLSTM after BERT.
- Using Span Graph to incorporate global context information, that is outside of text window scope of encoder.
- Using of coreferences between entities to further enhance global context modeling

Introduction 00000	Model Architecture	Datasets 0	Experiments and Results	Conclusion

Architecture Description

There are 4-layer structure of model inside framework:

- Token encoding: several sentences are fed to BERT
- **Span enumeration**: BERT embeddings are enumerated and coreferences are iteratively resolved and updated.
- Span graph propagation: iterative inference for relations and propagation of this information, as well as propagation of corefs and update of graph.
- Multi-task classification: final inference stage.
 Re-contextualized span representations or their pairs are supplied to two-layer FFNN scoring function.

Introduction	Model Architecture	Datasets	Experiments and Results	Conclusion
00000	0000	0	000	00

Architecture Description

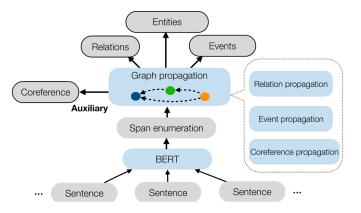


Figure: Overview of DyGIE++ model.

00000 0000 0	000	00

Architecture Description

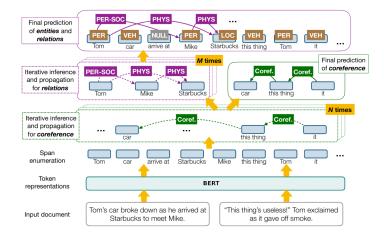


Figure: Overview of DyGIE++ model.

Introduction 00000	Model Architecture 000●	Datasets 0	Experiments and Results	Conclusion
Training				

The loss function for training process is defined as weighted sum of log-likelihood for all tasks (because of multi-task learning):

$$\sum_{\substack{(D,R^*,E^*,C^*)\in\mathcal{D}}} \left\{ \lambda_{\mathrm{E}} \log P(E^* \mid C, R, D) + \lambda_{\mathrm{R}} \log P(R^* \mid C, D) + \lambda_{\mathrm{C}} \log P(C^* \mid D) \right\}$$
(5)

Introduction	Model Architecture	Datasets	Experiments and Results	Conclusion
		•		

Datasets

Authors tested their model on several datasets from various domains:

	Domain	Docs	Ent	Rel	Trig	Arg
ACE05	News	511	7	6	-	-
ACE05-E	News	599	7	-	33	22
SciERC	AI	500	6	7	-	-
GENIA	Biomed	1999	5	-	-	-
WLP	Bio lab	622	18	13	-	-

Table 8: Datasets for joint entity and relation extraction and their statistics. *Ent*: Number of entity categories. *Rel*: Number of relation categories. *Trig*: Number of event trigger categories. *Arg*: Number of event argument categories.

Introduction	Model Architecture	Datasets	Experiments and Results	Conclusion
			000	

Experiments and Results

Dataset	Task	SOTA	Ours	$\Delta\%$
ACE05	Entity	88.4	88.6	1.7
	Relation	63.2	63.4	0.5
ACE05-Event*	Entity	87.1	90.7	27.9
	Trig-ID	73.9	76.5	9.6
	Trig-C	72.0	73.6	5.7
	Arg-ID	57.2	55.4	-4.2
	Arg-C	52.4	52.5	0.2
SciERC	Entity	65.2	67.5	6.6
	Relation	41.6	48.4	11.6
GENIA	Entity	76.2	77.9	7.1
WLPC	Entity	79.5	79.7	1.0
	Relation	64.1	65.9	5.0

Figure: DYGIE++ achieves state-of-the-art results. Test set F1 scores of best model, on all tasks and datasets.

Introduction 00000	Model Architecture	Datasets 0	Experiments and Results	Conclusion

Keynotes

- The largest gains from Coreference propagation are on the CS research abstracts of SciERC, which have lots or coreferences, acronyms and abbreviations.
- Relation propagation improves relation extraction performance over pre-trained BERT, but does not improve fine-tuned BERT. Probably, because relations predicted only within same sentence.

Introduction 00000	Model Architecture	Datasets 0	Experiments and Results	Conclusion

<u>Keynotes</u>

- Benefits of cross-sentence context with BERT: model achieved best results across all relation and extraction tasks with 3-sentence window.
- On Event Extraction, BERT fine-tuning decreases performance by 1.6 F1 on average across tasks. Probably, because of task sensitivity to hyperparameters choice - there were cases when trigger detector begun overfitting before the argument detector had finished training.

Introduction 00000	Model Architecture	Datasets 0	Experiments and Results	Conclusion ●○

Conclusion

The authors pushed forward state-of-the-art solutions to three main tasks of Information Extraction. The paper proves that multi-task learning can be reasonable way to asses global context modeling problem.

Introduction	Model Architecture	Datasets	Experiments and Results	Conclusion
00000	0000	0	000	00

Thanks for your attention!