Classification is a Strong Baseline for Deep Metric Learning

Andrew Zhai, Hao-Yu Wu

Presented by M.Rodin

November 17, 2020

1/13

Outline

1 Introduction

- Problem formulation
- Triplet loss

2 NormSoftmax

- Architecture
- LayerNorm
- Binarization
- Batch construction
- Results

3 Conclusion

4 Practice

Problem formulation

Triplet loss

$$L(r_a, r_p, r_n) = max(0, m + d(r_a, r_p) - d(r_a, r_n))$$
(1)

NormSoftmax: Architecture

$$L_{\text{norm}} = -\log\left(\frac{\exp\left(x^T p_y/\sigma\right)\right)}{\sum_{z \in Z} \exp\left(x^T p_z/\sigma\right)\right)}\right)$$

(2)

NormSoftmax: LayerNorm

- Allows us to easily binarize embeddings via thresholding at zero
- Helps the network better initialize new parameters and reach better optima

- thresholding at zero
- 2048 binary vector = 64 float vector (256 bytes in memory)

7/13

S	-	1	3	12	25	37	75
С	-	75	25	6	3	2	1
R@1	59.5	59.6	60.0	60.8	61.3	59.6	40.9

Table 4: ResNet50 Recall@1 on CUB-200-2011 dataset across varying samples per class for batch size of 75. (S) Samples per class in batch. (C) Distinct classes in batch. First column shows no class balancing in batch

NormSoftmax: Results

	Net.	CARS-196				CUB-200			
Recall@K		1	2	4	8	1	2	4	8
Contrastive ¹²⁸ [G	21.7	32.3	46.1	58.9	26.4	37.7	49.8	62.3
Lifted Struct ¹²⁸ [G	49.0	60.3	72.1	81.5	47.2	58.9	70.2	80.2
Clustering ⁶⁴ [1]	B	58.1	70.6	80.3	87.8	48.2	61.4	71.8	81.9
Npairs ⁶⁴ [11]	G	71.1	79.7	86.5	91.6	51.0	63.3	74.3	83.2
Angular Loss ⁵¹² []	G	71.4	81.4	87.5	92.1	54.7	66.3	76.0	83.9
Proxy NCA ⁶⁴ [🗳]	B	73.2	82.4	86.4	88.7	49.2	61.9	67.9	72.4
HDC ³⁸⁴ [G	73.7	83.2	89.5	93.8	53.6	65.7	77.0	85.6
Margin ¹²⁸ [22]	R50	79.6	86.5	91.9	95.1	<u>63.6</u>	74.4	83.1	90.0
HTL ⁵¹² [22]	B	81.4	88.0	92.7	95.7	57.1	68.8	78.7	86.5
A-BIER ⁵¹² [G	82.0	89.0	93.2	96.1	57.5	68.7	78.3	86.2
ABE-8 ⁵¹² [26]	G†	85.2	90.5	94.0	96.1	60.6	71.5	79.8	87.4
DREML ⁵⁷⁶ [🛄]	R18	86.0	91.7	95.0	97.2	63.9	75.0	83.1	89.7
LMCL ⁵¹² [23]	R50	73.9	81.7	87.4	91.5	58.7	70.3	79.9	86.9
LMCL*2048 [23]	R50	88.3	93.1	95.7	97.4	61.2	71.4	80.4	87.4
NormSoftMax ¹⁰²⁴	B	87.9	93.2	96.2	98.1	62.2	73.9	82.7	89.4
NormSoftmax ¹²⁸	R50	81.6	88.7	93.4	96.3	56.5	69.6	79.9	87.6
NormSoftmax ⁵¹²	R50	84.2	90.4	94.4	96.9	61.3	73.9	83.5	90.0
NormSoftmax ²⁰⁴⁸	R50	89.3	94.1	96.4	98.0	65.3	76.7	85.4	91.8
NormSoftmax ^{2048bits}	R50	<u>88.7</u>	<u>93.7</u>	96.4	98.0	63.3	<u>75.2</u>	<u>84.3</u>	<u>91.0</u>

- Classification-based metric learning approaches can achieve state-of-the-art
- Binarization is allowing us to achieve SOTA performance with the same memory footprint as 64 dimensional float embeddings

Tutorial in the similarity section

https://github.com/microsoft/computervision-recipes/

11 / 13

Practice: Document stamps detection

Thank you for your attention