Consistent Video Depth Estimation

Mohamed Nasser

Introduction

algorithm for reconstructing dense, geometrically consistent depth for all pixels in a monocular video.

use a learning-based prior, Conventional structure-from-motion reconstruction to establish geometric constraints on pixels in the video.

able to handle challenging hand-held captured input videos with a dynamic motion.

enables several applications such as scene reconstruction and advanced video-based visual effects.

Frame 1 Frame 2 Frame 3 Frame 4 (a) Input video

(b) COLMAP depth

Frame 1 Frame 2 Frame 3 Frame 4 (c) Mannequin Challenge depth

1.Pre-processing

Structure-from-Motion (SfM) :COLMAP

apply Mask R-CNN to segment out people To improve pose estimation for videos with dynamic motion ,

SfM : to provide us with the scale of the scene. Because our method works with monocular input, the reconstruction is ambiguous up to scale.

Scale calibration:scale of the SfM and the learning-based reconstructions typically do not match, because both methods are scale-invariant.

Scale calibration:

first compute the relative scale for image i as:

$$s_i = \underset{x}{\text{median}} \left\{ D_i^{NN}(x) / D_i^{MVS}(x) \mid D_i^{MVS}(x) \neq 0 \right\}, \quad (1)$$

compute the global scale adjustment factor s as

$$s = \max_{i} \{s_i\},\tag{2}$$

update all the camera translations

$$\tilde{t_i} = s \cdot t_i. \tag{3}$$

2.TEST-TIME TRAINING ON INPUT VIDEO

Video frames

Geometric loss.

Let x be a 2D pixel coordinate in frame i. The flow-displaced point

$$f_{i \to j}(x) = x + F_{i \to j}(x).$$

$$\begin{split} c_i(x) &= D_i(x) \, K_i^{-1} \tilde{x}, \\ c_{i \rightarrow j}(x) &= R_j^\mathsf{T} \Big(R_i \, c_i(x) + \tilde{t}_i - \tilde{t}_j \Big), \end{split}$$

$$p_{i \to j}(x) = \pi \big(K_j \, c_{i \to j}(x) \big),$$

$$\mathcal{L}_{i \to j}^{spatial}(x) = \left\| p_{i \to j}(x) - f_{i \to j}(x) \right\|_{2},$$
$$\mathcal{L}_{i \to j}^{disparity}(x) = u_{i} \left| z_{i \to j}^{-1}(x) - z_{j}^{-1}(f_{i \to j}(x)) \right|,$$

$$\mathcal{L}_{i \to j} = \frac{1}{\left| M_{i \to j} \right|} \sum_{x \in M_{i \to j}} \mathcal{L}_{i \to j}^{spatial}(x) + \lambda \mathcal{L}_{i \to j}^{disparity}(x),$$

RESULTS AND EVALUATION

custom stereo video datasets for evaluation.

(1) the TUM dataset (2) the ScanNet dataset (3) the KITTI 2015 datasets

Evaluation

Evaluation metrics.

	Static			Dynamic	
	$E_s (\%) \downarrow$	$E_d~(\%)\downarrow$	$E_p \downarrow$	$E_s (\%) \downarrow$	$E_p\downarrow$
WSVD [2019a]	4.13	19.12	11.90	4.10	17.46
NeuralRGBD [2019]	1.86	15.25	11.33	1.30	18.62
Mannequin [2019]	3.88	13.22	12.05	2.38	18.16
MiDaS-v2 [2019]	3.14	10.14	11.74	2.83	15.76
COLMAP [2016]	1.02	6.19	1070	1.47	-
Ours	0.44	2.12	10.09	0.40	14.44

Consistent video depth estimation enables interesting video-based special effects.

Limitations

- Colmap : to estimate the camera pose from a monocular video
- Dynamic motion : the method supports videos containing moderate object motion. It breaks for extreme object motion.

• Speed : As they extract geometric constraints using all the frames in a video, theydo not support online processing.