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* Some subtasks of audio pattern recognition

e Environmental sound and an acoustic scene classification tasks (DCASE, ESC-50,
MSoS)

e Musical genre classification tasks (GTZAN)

e Identifying and detecting species of animals (Cornell Birdcall Identification and
Rainforest Connection Species Audio Detection on kaggle)

e Emotion recognition tasks (RAVDESS, EmoDB)

Speaker recognition tasks (VoxCeleb)

e Some applications in medicine. For example, classification of lung diseases
using sound recordings which are recorded by electronic stethoscopes
(Respiratory Sound Database on kaggle) /

N*




* My approaches

e A new architecture of CNN based on WideResNet [11]
e Applying several data augmentation techniques

e Using several 2D audio features as input to CNNs and using different ensemble

methods (the weighted average and D-S theory)




* Data augmentation techniques for audio signals

e temporal cropping ("tC" = the temporal cropping length. Segments duration)

e speed stretching

e pitch shifting

e white noise (Gaussian)
e SpecAugment [1]

e mixup for audio signals [2]




* Residual Audio Neural Network and Optimization

e WideResNet as a based model with basic blocks as in ResNet-v2 [12]

e Changing of stride, kernel and padding sizes (tm is the temporal decreasing parameter)

For example:
sampling rate is 44100 Hz, duration is 8 sec, hop size is 320 and mel bins is 128 (the best choice for model as a

trade-off between computational complexity and system performance), then input tensor shape is:
(128, [44100 * 8 / 320] + 1) = (128, 1103). The width of input tensor to model is about 9 times higher than height!

e Leaky RelLU with 0.01 [13]
Adam optimizer [14], One Cyclic Learning Rate Scheduler [15] and EMA of model

parameters [16]
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Log Mel Spectrogram [3]

Mel-Frequency Cepstral Coefficients (MFCC) [4]
Gammatone Frequency Cepstral Coefficients (GFCC) [5]
Chromagram [6]

Constant-Q Transform (CQT) [7]

Tempogram [8]

Wavegram [3]




Wavegram
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librosa
spafe
pywavelets

GPU, PyTorch:
e torch.fft
e torchlibrosa
e torchaudio
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* How to combine models with different features?

weighted average method m(0) = 0
e D-S Evidence Fusion method [9] LR W\ ] <m(A) <1, VAC®O
e Improved D-S Evidence Fusion method [9] Y m(4)=1
ACO

(M1 & ... dmy)(z € A) = ﬁnmi(x € A)

_ & k=1-— nmi(iL'EA)
me(x) = ;wi -m; () féi:r[l

iwl=1 ma(xeA):(ml@@mn)((EEA)

i=1 pred,(x) = max me(z € A)
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Results, Audioset

Comparison of the computational complexity and the
performance of models with different hyper-parameters
(only Mel Spectrogram)

TABLE XII
COMPARISON OF THE COMPUTATIONAL COMPLEXITY AND THE
TABLE VII PERFORMANCE OF DIFFERENT SYSTEMS
COMPARISON OF RANNS WITH DIFFERENT VALUES FOR PAIRS OF t. AND

tm FOR THE AUDIOSET TAGGING System | mAP | Parameters  Multi-Adds

System | F'xT | mAP  mAUC CNN14 [3] | 0431 | 80,753,615  42.220%10°

RANN-4x4-6 | 8 x8 | 0407 0974 ResNet38 [3] | 0434 | 737783247  48.962x10°
RANN-8x1-6 | 8 x 64 | 0428  0.974 Wavegram-Logmel-CNN [3] | 0439 | 81,065.487  53.510x10°
RANN-8x2-6 | 8 x 32 | 0435 0975 RANN-4x4-6 | 0407 | 54919313  23.569x10°
RANN-8x4-6 | 8 x 16 | 0443  0.975 RANN-8x1-6 | 0428 | 54435473 101.231x10°
N | e WetE g RANN-8x2-6 | 0435 | 54532241  61.745x10°
RANN-8x4-6 | 0.443 | 54919313  47.137x 10°

RANN-8x8-6 | 0432 | 56,467,601  42.399 x10°

: 2 2 9

The previous best score: 0.439 [3] RANN-8x4-5 | 0.424 | 38,198,545 32743 x10
RANN-8x4-4 | 0410 | 24,504,849  20.964 x10°

My best score (from scratch): 0.443



Mel Spect MFCC CQT GFCC  Wave | Acc. WA Acc. (D-S) Acc. (ID-S)

Results A ESC-50 v v | 089 0.890 0.887

Comparison of the performance of models with u / I s WEe 0
d .ff t d . f t v v | 0.892 0.881 0.882
ifferent audio features ; aR —
v v | 0.881 0.879 0.880

v v | 0.875 0.873 0.874

| Accuracy | mAP Fl v v | 0.872 0.870 0.870

v v | 0.863 0.866 0.860

Mel Spectrogram | 0.878 | 0.945  0.876 v v | 0856 0.869 0.856
MFCC | 0853 | 0916 0850 @ L e o

v v v | 0.904 0.897 0.897

Cor | 0823 | 0.889 0.819 v v v | 0901 0.894 0.895

GFCC | 0813 | 0.896 0.809 v ’ L HaWh e s

v v v | 0897 0.890 0.886

Wavegram | 0.813 | 0.889  0.806 5 ” 7| 0900 e o
Chromagram | 0.708 | 0.720  0.707 v v v | 0898 0.886 0.883
Tempogram | 0455 | 0467 0453 ¥ o L T8 9§ e

v v v | 0.891 0.889 0.887

v v v | 0.887 0.883 0.884

v v v | 0.876 0.877 0.869

v v v v | 0.900 0.897 0.898

v v v v | 0.898 0.893 0.891

The previous best score (from scratch, 2020): 0.89 [10] Y e AN i
v v v v | 0.910 0.904 0.904

My best score (from scratch): 0.91 A S W Gl 0890
v v v v v | 0.910 0.901 0.898




Results, RAVDESS
Comparison of the performance of
models with different audio features

System | Accuracy
Mel Spectrogram | 0.739
Mel Spectrogram + MFCC + CQT, WA | 0.772
Mel Spectrogram + MFCC + CQT, scratch,(our), D-S | 0.768

Mel Spectrogram + MFCC + CQT + GFCC + Wave, scratch, (our), WA |  0.774

The previous best score (fine-tune, 2020): 0.721 [3]
My best score (from scratch): 0.774 (the weighted average) and 0.768 (D-S theory)

N*



Training models with another features as input and using ensembles methods for
the AudioSet dataset. Already an mAP of 0.443 have been achieved with only one
model with Mel Spectrogram as input. | expect an mAP of ~ 0.5 with several
features... Previous best mAP on the AudioSet dataset is 0.439 [3].

Transfer system pretrained on AudioSet to other task and achieve best score on
DCASE 2019 Task 1A, DCASE 2020 Task 1A, MSoS, ESC-50 (previous best accuracy
with fine-tuning is 0.945 [3], i expect ~ 0.97)

Kaggle Competition (Rainforest Connection Species Audio Detection)

Paper publication (~february of 2021) and participating in INTERSPEECH 2021 and

in DCASE 2021.
/ N*
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