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● Environmental sound and an acoustic scene  classification tasks (DCASE, ESC-50, 
MSoS)

● Musical  genre  classification  tasks (GTZAN)
● Identifying  and detecting  species  of  animals (Cornell  Birdcall Identification and 

Rainforest  Connection  Species Audio Detection on kaggle)
● Emotion recognition tasks (RAVDESS, EmoDB)
● Speaker recognition tasks (VoxCeleb)
● Some applications in medicine. For example, classification  of lung  diseases  

using  sound  recordings  which  are  recorded  by electronic  stethoscopes 
(Respiratory Sound Database on kaggle)

Some subtasks of audio pattern recognition



● A new architecture of CNN based on WideResNet [11]

● Applying several data augmentation techniques

● Using several 2D audio features as input to CNNs and using different ensemble 

methods (the weighted average and D-S theory)

My approaches



● temporal cropping (“tc” = the temporal cropping length. Segments duration)

● speed stretching

● pitch shifting

● white noise (Gaussian)

● SpecAugment [1]

● mixup for audio signals [2]

Data augmentation techniques for audio signals



● WideResNet as a based model with basic blocks as in ResNet-v2 [12]

● Changing of stride, kernel and padding sizes (tm is the temporal decreasing parameter)

For example:
sampling rate is 44100 Hz, duration is 8 sec, hop size is 320 and mel bins is 128 (the best choice for model as  a  
trade-off  between  computational complexity and system performance),  then input tensor shape is:
(128, [44100 * 8 / 320] + 1) = (128, 1103). The width of input tensor to model is about 9  times higher than height!

● Leaky ReLU with 0.01 [13]
● Adam optimizer [14], One Cyclic Learning Rate Scheduler [15] and EMA of model 

parameters [16]

Residual Audio Neural Network and Optimization



● Log Mel Spectrogram [3]

● Mel-Frequency Cepstral Coefficients (MFCC) [4]

● Gammatone Frequency Cepstral Coefficients (GFCC) [5]

● Chromagram [6]

● Constant-Q Transform (CQT) [7]

● Tempogram [8]

● Wavegram [3]

Features



Wavegram 

sr - sampling rate

t - duration (sec)

k - kernel size

s - stride size

p - padding size

d - dilation

T1 - the number of 

temporal frames



CPU:
● librosa 
● spafe 
● pywavelets 

GPU, PyTorch:
● torch.fft 
● torchlibrosa 
● torchaudio 



● weighted average method
● D-S Evidence Fusion method [9]
● Improved D-S Evidence Fusion method [9]

How to combine models with different features?



Results, Audioset
Comparison of the computational complexity and the 
performance of models with different hyper-parameters 
(only Mel Spectrogram)

The previous best score: 0.439 [3]

My best score (from scratch): 0.443 



The previous best score (from scratch, 2020): 0.89 [10]

My best score (from scratch): 0.91 

Results, ESC-50
Comparison of the performance of models with 
different audio features



Results, RAVDESS
Comparison of the performance of 
models with different audio features

The previous best score (fine-tune, 2020): 0.721 [3]

My best score (from scratch): 0.774 (the weighted average) and 0.768 (D-S theory)



● Training models with another features as input and using ensembles methods for 
the AudioSet dataset. Already an mAP of 0.443 have been achieved with only one 
model with Mel Spectrogram as input. I expect an mAP of ~ 0.5 with several 
features... Previous best mAP on the AudioSet dataset is 0.439 [3].

● Transfer system pretrained on AudioSet to other task and achieve best score on 
DCASE 2019 Task 1A, DCASE 2020 Task 1A, MSoS, ESC-50 (previous best accuracy 
with fine-tuning is 0.945 [3], i expect ~ 0.97)

● Kaggle Competition (Rainforest Connection Species Audio Detection)
● Paper publication (~february of 2021) and participating in INTERSPEECH 2021 and 

in DCASE 2021.

Future work....
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