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Introduction



Advantage

● Easy to integrate with modern game engines, requires no special hardware or 
software.

● Method takes common inputs from modern game engines: color, depth and 
motion vectors at a lower resolution.

● Method allows for compelling 4×4 upsampling from highly aliased input and 
produces high fidelity and temporally stable results in real-time.

● Created a new dataset with realistic camera movement for temporal stability 
(with large rotation and movement).



Summarizing the technical contribution

● This a temporal neural network tailored for image supersampling of rendered 
content that employs rich rendering attributes (i.e., color, depth, and motion 
vectors) and that is optimized for real-time applications.

● Demonstrating the first learned supersampling method that achieves significant 
4×4 supersampling with high spatial and temporal fidelity. 

● This method significantly outperforms prior work, including real-time temporal 
anti aliasing upscaling and state-of-the-art image and video super resolution 
methods, both in terms of visual fidelity and quantitative metrics of image 
quality. 





Related works



Spatial Anti Aliasing

● MultiSampling Anti Aliasing (MSAA), where the color of a polygon covered by a 
pixels is only calculated once, avoiding computing multiple subpixels samples 
for the same polygon. 

● Texture filtering, where high-frequency details coming from surface textures are 
prefiltered using image pyramids. A proper prefiltered region is then selected in 
runtime based on the pixel’s footprint projected to the textured surface.

● MorphoLogical Anti Aliasing (MLAA) try to estimate the pixel coverage of the 
original geometry based on the color discontinuities found in the proximity of 
the pixels in the final image.



Spatial Anti Aliasing

● Fast Approximate Anti Aliasing (FXAA) approaches the undersampling problem 
by attenuating subpixel features, which enhances the perceived temporal 
stability.

● Subpixel Morphological Anti Aliasing (SMAA) combines MLAA with MSAA.



  Temporal Anti Aliasing and Reconstruction
● Temporal Anti Aliasing (TAA) uses an edge detection filter as a proxy to suppress 

flicker by heavier temporal accumulation. Recently, TAA has been also employed 
to perform temporal upsampling (TAAU).

● Deep-Learned SuperSampling (DLSS) is the closest to our method, and uses 
temporal history and neural networks to enhance edges and perform upscaling.

● Another recent trend in reducing the rendering cost is to apply reconstruction 
methods to sparsely ray-traced and foveated images. There is a recent body of 
work on applying machine learning methods to real-time lowsample-count 
reconstruction and foveated reconstruction. These methods train temporally 
stable U-Net architectures to achieve a stable reconstructed video out of very 
noisy and/or sparse input frames, which is related to our task of interpolation for 
upsampling.



Single Image Super Resolution

● Instead of learning the direct mapping between the high-resolution target 
image and the low-resolution input image, Very Deep Super Resolution (VDSR) 
learns the residual between the two.

● SRResNet applies residual network architecture to the superresolution problem, 
and Enhanced Deep Super Resolution (EDSR) further improves the performance 
by utilizing more, modified residual blocks.

● Efficient SubPixel Convolutional Neural Network (ESPCN) introduces a subpixel 
CNN that operates at low resolution and achieves real-time performance.

● And Laplacian Pyramid Super Resolution Network (LapSRN), Residual Dense 
Network (RDN), Residual Channel Attention Networks (RCAN)



Video Super Resolution

● VESPCN introduces a multi-resolution spatial transformer module for joint 
motion compensation and video super resolution.

● SPMCVSR introduces a subpixel motion compensation layer to fuse multiple 
frames for revealing image details.

● EDVR applies a pyramid, cascading and deformable alignment module and a 
temporal and spatial attention module.

● FRVSR proposes a RNN that warps the previously estimated frame to facilitate 
the subsequent one.

● RBPN develops a recurrent encoder-decoder architecture for incorporating 
features extracted from single-image and multi-frame modules.

● TecoGAN



Method



Method first warps previous frames to align with the current frame, in order to reduce the 
required receptive field and complexity of the reconstruction network. In contrast to existing 
work, however, to better exploit the specifics of rendered data, i.e., point-sampled colors and 
subpixel-precise motion vectors, method applies the frame warping at the target (high) 
resolution space rather than at the input (low) resolution. Specifically, the method projects the 
input pixels to the high resolution space, prior to the warping, by zero-upsampling. As the 
rendered motion vectors do not reflect disocclusion or shading changes between frames, the 
warped previous frames would contain invalid pixels mismatching with the current frame, which 
would mislead the post-reconstruction. To address this problem, we include a reweighting 
mechanism before the reconstruction network to de-select those invalid pixels. The reweighting 
mechanism is related to the confidence map approaches used for multi-frame blending in 
various applications. In contrast to these approaches, however, method utilizes a neural network 
to learn the reweighting weights. Lastly, the preprocessed previous frames (after 
zero-upsampling, warping and reweighting) are stacked together with the current frame (after 
zero-upsampling), and fed into a reconstruction network for generating the desired 
high-resolution image.



Network Architecture



Feature Extraction

The feature extraction module contains a 
3-layer convolutional neural network. This 
subnetwork processes each input frame 
individually, and shares weights across all 
frames except for the current frame. For each 
frame, the subnetwork takes color and depth as 
input, and generates 8-channel learned features, 
which are then concatenated with the input 
color and depth, resulting in 12-channel 
features in total. 



Temporal Reprojection
To reduce the required receptive field and thus complexity of the reconstruction network, 
we apply temporal reprojection to project pixel samples and learned features of each 
previous frame to the current, by using the rendered motion vectors. In order to fully 
exploit the subpixel backward motion vectors, we conduct the temporal reprojection at 
the target (high) resolution space. First, we project the pixel samples from input (low) 
resolution space to the high resolution space, by zero upsampling, i.e. assigning each input 
pixel to its corresponding pixel at high resolution and leaving all the missing pixels 
around it as zeros. Then, we resize the rendered low resolution map of motion vectors to 
high resolution simply by bilinear upsampling, taking advantage of the fact that the 
motion vectors are piece-wise smooth. Next, we apply backward warping of the 
zero-upsampled previous frames using the upsampled motion vectors, while bilinear 
interpolation is adopted during warping.



Feature Reweighting

The feature reweighting module is a 3-layer 
convolutional neural network, which takes the 
RGB-D of the zero-upsampled current frame as 
well as the zero-upsampled, warped previous 
frames as input, and generates a pixel-wise 
weighting map for each previous frame, with 
values between 0 and 10, where 10 is a 
hyperparameter. The hyperparameter is set to 
allow the learned map to not just attenuate, but 
also amplify the features per pixel, and empirically we found the dynamic range of 10 was 
enough. Then each weighting map is multiplied to all features of the corresponding 
previous frame.



Reconstruction

Finally, the features of the current frame and the reweighted features of previous 
frames are concatenated and fed into a reconstruction network, which outputs the 
recovered high resolution image of the current frame. We adopt a 3-scale, 10-layer 
U-Net with skip connections for the reconstruction subnetwork.



Losses

The training loss of our method, as given in formula, is a weighted combination of 
the perceptual loss computed from a pretrained VGG-16 network as introduced in 
Johnson et al., and the structural similarity index (SSIM).

where    and    are the network output and reference high-resolution image 
respectively, and the relative weight is 𝑤 = 0.1. We refer to Johnson et al. for the full 
details of selected VGG-16 layers.



Results



Ours
PSNR = 31.74dB, SSIM = 0.9430
TAAU
PSNR = 30.06dB, SSIM = 0.9070



Thanks for attention!


