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Conventional Supervised Learning
We have a labeled training set of NL input-output pairs DL = {xi , yi}NL

i=1,
where y = (s, e), x = s + e, s - clean speech signal, e -interference
signal.And unlabeled data DU = {xj}N=NL+Nu

j=1
In a supervised learning framework, given a speech separation model fθ
with parameters θ, an objective function L(fθ(x), y) is usually defined as
the divergence between the predicted outputs fθ(x) = (ŝ, ê) and the

original clean sources y .

L(fθ(x), y) = min
u∈{ŝ,ê}

LSI−SNR(s, u) + min
v∈{ŝ,ê}

LSI−SNR(e, v)

LSI−SNRI (a, b) = −10log10
||Πa(b)||22
||b−Πa(b)||22

where Πa(b) = aTb/||a||22 · a is a projection of b onto a.

Рис.: Caption
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Conventional Supervised Learning

Assuming that the input-output pairs follow a joint distribution P(x , y),
which is usually unknown, we minimize the average of the objective
function over the joint distribution, i.e., the expected risk, to find an
optimal set of parameters θ∗ :

θ∗ ≈ arg min
θ

∫
L(fθ(x), y)dPEMP(x , y ;DL) = arg min

θ

1
NL

Nl∑
i=1

L(fθ(xi ), yi )

We approximate the unknown joint data distribution P(x, y), an empirical
distribution is used:

PEMP(x , y ;DL) =
1
NL

Nl∑
i=1

δ(x = xi , y = yi )

is also known as Empirical Risk Minimization (ERM).
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Mixup approach1

In the Vicinal Risk Minimization (VRM) principle (Chapelle et al., 2000),
the distribution P is approximated by:

Pν(x̃ , ỹ) =
1
n

n∑
i=1

ν(x̃ , ỹ |xi , yi )

To learn using VRM, we sample the vicinal distribution to construct a
dataset Dν := {x̂i , ŷi}mi=1 and minimize the empirical vicinal risk:

Rν(f ) =
1
m

m∑
i=1

`(f (x̃i ), ỹi )

1mixup: BEYOND EMPIRICAL RISK MINIMIZATION,Hongyi Zhang Moustapha
Cisse, Yann N. Dauphin, David Lopez-Paz 2018
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Mixup approach

We get a generic vicinal distribution called mixup:

µ(x̃ , ỹ |xi , yi ) =
1
n

n∑
j

Eλ[δ(x̃ = λ · xi + (1− λ) · xj , ỹ = λ · yi + (1− λ) · yi )]

where λ ∼ Beta(α, α) for α ∈ (0,∞)

Рис.: Effect of mixup (α = 1) on a toy problem. Green: Class 0. Orange: Class 1.
Blue shading indicates p(y = 1|x).
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Mixup-Breakdown
Let’s introduce Mixup and Breakdown operations:

Mixλ(a, b) , λ · a + (1− λ) · b
Breakλ(a, b) , (λ · a, (1− λ) · b)

where a and b two arbitrary signals and λ ∼ Beta(α, α) for α ∈ (0,∞) is
inherited from the mixup approach. The Mixup-Breakdown (MB) strategy
trains a student model fθS to provide consistent predictions with the
teacher model fθT of the same network structure at perturbations of
predicted separations from the input mixtures (either labeled or unlabeled):

fθS (Mixλ(fθT (xj))) ≈ Breakλ(fθT (xj))

Mathematically, the MB operation can view as a generic augmentation of
the empirical distribution:

dPEMP(x̃ , ỹ ;D) =
1
N

N∑
i=1

v(x̃ , ỹ |xi )

v(x̃ , ỹ |xi ) = Eλ[δ(x̃ = Mixλ(fθT (xi )), ỹ = Breakλ(fθT (xi )))]
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Mixup Breadown Training

In this way we present a new consistency-based training method, namely,
Mixup-Breakdown Training (MBT):

θ∗S ≈
[∫
L(fθS (x), y)dPEMP(x , y ;DL)︸ ︷︷ ︸

Correctnes

+

r(t)

∫
L(fθS (x̃), ỹ)dPMBT (x̃ , ˜y ;D)︸ ︷︷ ︸

Consistensy

]
=

= arg min
θS

[
1
NL

nL∑
i=1

L(fθS (xi ), yi )+

+
r(t)

N

N∑
j=1

L(fθs(Mixλ(fθT (xj))),Breakλ(fθT (xj)))

]
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Рис.: Mixup-Breakdown Training
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Experiments
• Data

• WSJ0-Libri: using clean speech drawn from the publicly available
Librispeech 100h training corpus.

• WSJ0-music: using music clips drawn from a 43-hour music
dataset that contains various classical and popular music genres,
e.g., baroque, classical, romantic, jazz,country, and hip-hop.

• WSJ0-noise: using noise clips drawn from a 4-hour recording
collected in various daily life scenarios such as office, restaurant,
supermarket, and construction place.

• Implementation Details Authors implemented the mixup, MT, ICT,
and our proposed MBT to train Conv-TasNet for comparative
performance analysis. In all SSL settings, we set the same decay
coefficient for the mean-teacher to 0.999, and the same ramp function
r(t) = exp(t/Tmax 1) for t 1, ..., Tmax, where Tmax = 100 was the
maximum number of epochs. Besides, we set α = 1 , so that λ
becames uniformly distributed in [0, 1].
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“online” data augmentation for purely supervised learning

Рис.: Comparison of performances on the WSJ0-2mix dataset
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Generalization Capability.Mismatch Speech Interference

Рис.: Separation performance of different training approaches in the presence of
mismatch speech interference
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Generalization Capability. Mismatch Background Noise
Interference

Рис.: Separation performance of different training approaches in the presence of
mismatch background noise interference
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Generalization Capability.Mismatch Music Interference

Рис.: Separation performance of different training approaches in the presence of
mismatch music interference

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu (НГУ)MIXUP-BREAKDOWN: A CONSISTENCY TRAINING METHOD FOR IMPROVING GENERALIZATION OF SPEECH SEPARATION MODELS13 / 14



Thank you for your attention!

Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu (НГУ)MIXUP-BREAKDOWN: A CONSISTENCY TRAINING METHOD FOR IMPROVING GENERALIZATION OF SPEECH SEPARATION MODELS14 / 14


