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Introduction

Neural Network optimizers have two goals:
speed up training process
improve model generalization capabilities

Divers optimization algorithms exist such as Stochastic Gradient
Descent with Momentum (SGDM) and Adam.
Normalization of the network activations: Batch Normalization
(BN), Group Normalization (GN).
Normalization of the weights: Weight Standardization (WS),
Weight Normalization (WN).
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Introduction

The paper referenced [1] introduce the new technique Gradient
Centralization (GC), it operates on the gradient of weight vectors by
centralizing the gradient vector to have zero mean. It can be
implemented in gradient based optimization algorithms with one line
of code.
This technique demonstrates a shortened training process, improved
generalization performance, and compatibility for fine-tuning
pre-trained models.
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Introduction

(a)
(b)

Fig. 1. (a) Sketch map for using gradient centralization (GC). W is the weight matrix, L is the loss function, ∇L is the gradient
of weight, and ΦGC (∇WL) is the centralized gradient. It is very simple to embed GC into existing network optimizers by
replacing ∇WL with ΦGC (∇WL). (b) Illustration of the GC operation on gradient matrix/tensor of weights in the
fully-connected layer (left) and convolutional layer (right). GC computes the column/slice mean of gradient matrix/tensor and
centralizes each column/slice to have zero mean.
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Gradient Centralization

Using Z-score standardization to normalize the gradient, as in BN and
WS, was found not to improve the stability of training, as opposed to
computing the mean of gradient vectors and centralizing them to have
zero mean.
The GC operator denoted as ΦGC is define as:

ΦGC(∇wiL) = ∇wiL − µ∇wiL (1)

where L is the loss function, wi is a weight vector whose gradient is
∇wiL, and µ∇wiL =

1
M

∑M
j=1 ∇wiL.
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Gradient Centralization

Embedding of GC in the SGDM and Adam algorithms
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Gradient Centralization

GC can also be viewed as a projected gradient descent. Let’s rewrite
equation (1) as a matrix formulation:

ΦGC(∇wL) = P∇wL, P = I − eeT (2)

where e = 1√
M

1 denotes an M–dimensional unit vector and I the
identity matrix of size M × M . Then P is the projection matrix on the
hyperplane, in weight space, determined by eT (w − wt ) = 0. 1

1WS uses the constraints eTw = 0 but the initial weights may not satisfy this
constraint therefore limiting its practical applications.
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Gradient Centralization
The objective function can be written as:

min
w
L(w), s.t . eT (w − w0) = 0 (3)

This regularization constraint reduces the possibility of over-fitting.

Fig. 2. The geometrical interpretation of GC. The gradient is projected on a hyperplane eT (w −wt ) = 0, where the projected
gradient is used to update the weight.
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Results

Experimental results have been obtained on the following datasets:
Mini-ImageNet
CIFAR100
ImageNet
Fine-grained image classification datasets (FGVC Aircraft,
Stanford Cars, Stanford Dogs, CUB-200-2011)
Object detection and segmentation dataset (COCO)
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Mini-ImageNet
In Fig. 3. we can see that the red and blue lines, that correspond to the
use of GC, have a lower training loss than without GC, and a better
test accuracy as well (or at least as good).

Fig. 3. Training loss and test accuracy curves vs. training epoch on Mini-ImageNet. The ResNet50 is used as the DNN model.
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CIFAR100
In Table 1. are displayed the test accuracies 2 on the dataset
CIFAR100 with different DNN architectures and optimizers.

Architecture Optimizer w/o GC w/ GC Increase
ResNet18 SGDM 76.87 78.82 1.95

ResNet50
SGDM 78.23 79.14 0.89
Adam 71.64 72.80 1.16
Adagrad 70.34 71.58 1.24

VGG11 SGDM 70.94 71.69 0.75
DenseNet121 SGDM 79.31 79.68 0.37

Table 1. Testing accuracies (%) on CIFAR100

2More test accuracies with different weight decays and learning rates are present
in [1].
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ImageNet
Fig. 4. shows that GC speed up the training with Group
Normalization. More results in [1] with ResNet50, ResNet101, BN,
and GN show an improvement of performance of 0.5% ∼ 1.2%.

Fig. 4. Training error and validation error curves vs. training epoch on ImageNet. The ResNet50 architecture is used as the
DNN model with GN.
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Other datasets

Results on the datasets for fine-grained image classification show
improvements of up to 2.1% in classification accuracy with GC.

Results on the datasets for object detection and segmentation also
show performance gain in the average precision of the order of
0.3% ∼ 0.9% with GC.
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Conclusion

GC has demonstrated improvement in accuracy for DNNs, it showed
that it speeds up the training process and has a smoother optimization
landscape. It can be used in addition to other techniques such as BN
and WS, and works with different optimizers as well as different DNN
architectures. Finally, it can also be used to fine-tune pre-trained
models. All of this with an easy implementation.
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Paper: arxiv.org/abs/2004.01461

Code: github.com/Yonghongwei/Gradient-Centralization
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https://arxiv.org/abs/2004.01461
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