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Introduction

o Artificial intelligence : Artificial agents achieving goals smartly
@ Machine learning : Algorithmic models responsible for smartness

@ Explainable artificial intelligence : Techniques to explain the models
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Outline

Explainable artificial intelligence (XAl) techniques for sentiment analysis

@ Model development
e Sentiment analysis model on IMDB movie reviews dataset
@ Technique |
o Local interpretable model-agnostic explanations (LIME): Explaining
with surrogate models
@ Technique Il
o Layer-wise relevance propagation (LRP): Explaining with propagated
weights relevance scores of the network
@ Technique Il
o Atrtificial neural network decision tree algorithm (Ruleex ANN-DT):
Explaining by extraction of decision trees from artificial neural networks
@ Performance Analysis
e Simulatability test: A model is simulatable when a person can predict
its behavior on new inputs
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Exploration of LIME for sentiment analysis - |

Local interpretable model-agnostic explanations
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Recall on truly important features
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Exploration of LIME for sentiment analysis - |l

Local interpretable model-agnostic explanations

Input text: “This movie was beyond disappointment. Well acted story that means
nothing. The plot is ridiculous and even what story there is goes absolutely nowhere.
It truly isn't worth a nickel, buffalo or otherwise..pun intended!”

POS WORD CONTRIBUTE:

Worth Well truly

NEG WORD CONTRIBUTE:
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Exploration of LRP for sentiment analysis - |

Layer-wise relevance propagation
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Fig. 10.2. Illustration of the LRP procedure. Each neuron redistributes to the lower
layer as much as it has received from the higher layer.
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Exploration of LRP for sentiment analysis - |l

Layer-wise relevance propagation

Input text: “This movie was beyond disappointment. Well acted story that means
nothing. The plot is ridiculous and even what story there is goes absolutely nowhere.
It truly isn't worth a nickel, buffalo or otherwise..pun intended!”

WORD CONTRIBUTE:

Fidicll disappoint noth absolut worth well act even plot mean
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Exploration of Ruleex ANN for sentiment analysis - |
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@ Selection of Attribute: Similar to CART algorithm of reducing the
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@ Stopping criteria: Standard deviation or the variance is zero

@ Statistical pruning technique: chi squared
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Exploration of Ruleex ANN-DT for sentiment analysis - Il

@ Decision Tree representation (showing sub-section here)
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Performance Analysis Method

Simulatability test: Model is simulatable if person can predict

its behavior on new inputs
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XAI Phase Forward Test Counterfactual Test Total
LIME - Pre 90.0% 65.0% 77.5%
LIME - Post 90.0% 90.0% 90.0%
LIME - Change 0.0% 25.0% 12.5.0%
LRP - Post 90.0% 65.0% 71.5%
LRP - Pre 95.0% 85.0% 90.0%
LRP - Change 5.0% 20.0% 12.5.0%

@ A total of 120 data points were collected

@ Improvement the accuracy of model prediction capability of the

human subject by 12.5%
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Paper Readiness

@ International Conference on Data Science and Applications, ICDSA
2021 (Accepted for presentation in conference)

@ Improve results (Performance analysis on ANN-DT technique) and
apply in other conferences
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