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Introduction

 What have been done:
* Add modifications to improve upon the U-Net model
 Compare MultiResUNet with the classical U-Net 5 datasets of various medical
images
* Result:
* |ldeal images: slight improvements

* Challenging images: remarkable gain in performance
e Relative improvements respectively: 10.15%, 5.07%, 2.63%, 1.41%, and 0.62%



Overview of the U-Net Architecture
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Proposed Architecture

* Replace the sequence of two convolutional layers with the proposed
MultiRes block
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MultiRes block — capture features in different
scales
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Replacing the convolutional layers with Inception-like blocks should facilitate the U-Net architecture to reconcile the

features learnt from the image at different scales
Factorize the bigger, more demanding 5 x 5 and 7 x 7 convolutional layers, using a sequence of smaller and

lightweight 3 x 3 convolutional blocks
Gradually increase the filters in those (from 1 to 3), to prevent the memory requirement of the earlier layers from

exceedingly propagating to the deeper part of the network



Res path — reduce semantic gap
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Datasets

* Fluorescence Microscopy Image

* Electron Microscopy Image

* Dermoscopy Image

* Endoscopy Image

* Magnetic Resonance Image

Table 2: Overview of the Datasets.

Modality Dataset No. of images | Original Resolution | Input Resolution
Fluorescence Microscopy | Murphy Lab 97 Variable 256 x 256
Electron Microscopy ISBI-2012 30 512 x 512 256 x 256
Dermoscopy ISIC-2018 2594 Variable 256 x 192
Endoscopy CVC-ClinicDB 612 384 x 288 256 x 192
MRI BraTS17 | 2O HGG+ 1 910 x240x 155 | 80x80x 48

75 LGG




Experiments

Baseline: original U-Net with five-layer deep encoder and decoder, with filter
numbers of 32, 64, 128, 256, 512.

3D version: substituting the 2D with the 3D coutnerparts without any further
alterations

Pre-processing: resize and convert to range [0..1]

No post-processing

Sigmoid on the last layer with threshold = 0.5

2D 3D
Model Parameters Model Parameters
U-Net (baseline) 7,759,521 | 3D U-Net (baseline) 19,078,593
MultiResUNet (proposed) | 7,262,750 | MultiResUNet 3D (proposed) | 18,657,689




Experiments

e 5-fold cross validation over 150
* Optimizer: Adam
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* Loss function:  ¢ross Entropy(X,Y,V) = Y =Y 108(Gp0) + (1 — Ypa) log(1 — D))
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Results

* MultiResUNet Consistently Outperforms U-Net

* On all different types of medical images, remarkable improvements for
Dermoscopy and Endoscopy images (less uniform images)

Modality MultiResUNet (%) U-Net (%) Relative Improvement (%)
Dermoscopy 80.2988 + 0.3717 | 76.4277 + 4.5183 5.065 %
Endoscopy 82.0574 4+ 1.5953 | 74.4984 + 1.4704 10.1465 %
Fluorescence Microscopy | 91.6537 & 0.9563 | 89.3027 £ 2.1950 2.6326
Electron Microscopy 87.9477 £ 0.7741 | 87.4092 £ 0.7071 0.6161
MRI 78.1936 £+ 0.7868 | 77.1061 = 0.7768 1.4104




Results

* MultiResUNet can Obtain Better Results in Less Number of Epochs

Dermatoscopy Dataset : ISIC-2018 Endoscopy Dataset : CVC-ChinicDB Fluorescence Microscopy Dataset : ISBI-2009
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Results

* MultiResUNet Delineates Faint Boundaries Better

* For more challenging images, especially with not so much conspicuous
boundaries, U-Net seems to be struggling a bit




Results

* MultiResUNet is More Immune to Perturbations
* U-Net was unable to segment the forground as a continuous region

* for images where the background is not uniform, the U-Net model seems to
make some false predictions

* More false on the rough background or even fail to make predictions
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Results

* MultiResUNet is More Reliable Against Outliers

* MultiResUNet segmentation on outliers were consistently better than that of
the U-Net.

* fluorescence microscopy images

Not cell nuclei

Input Image Qutput fr

0.9317)

om U-Net
217)



Results

* MultiResUNet on Segmenting the Majority Class

e Usually, ROI consists of a small portion, but in the Electron Microscopy
dataset the ROl under consideration comprises the majority of the images
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